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Learning Goals

• Learn about results that can be used to bound the

probability that the value of a random variable is larger

than a given threshold... or smaller than a given

threshold... or far from its expected value.
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Restricting Attention to Finite Sample Spaces

• Results introduced, in this lecture, will concern the special

case that the sample space, Ω, is finite.

• Similar results can be established for infinite sample

spaces — but these only hold when additional technical

conditions (which always hold when the sample space is

finite) are satisfied.

• Additional information will be provided about the case that

the sample space is infinite, either in supplemental

material or during the lecture presentation.
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A Useful Result about Expectation

Lemma #1: Let Ω be a finite simple space with probability

distribution P : Ω → R, and let X : Ω → V be a random variable

(so that V ⊆ R). If g : R → R be a total function, and

g(V ) = {g(v) | v ∈ V}

— so that “g(X )” is a random variable such that

g(X ) : Ω → g(V ) ⊆ R — then

E[g(X )] =
∑

µ∈Ω
g(X (µ))× P(µ)

=
∑

v∈V

g(v)× P(X = v)

=
∑

w∈g(V )

w × P(g(X ) = w).
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A Useful Result about Expectation

How This is Proved:

• The first equation follows by the definition of the expected

value of a random variables.

• If the sample space, Ω, is finite, then the sums shown at

each of these lines is the sum of a finite number of nonzero

terms. The expression on the second and third lines are

both obtained by re-ordering terms.
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A Useful Result about Expectation

Lemma #2: Let Ω be a finite sample space with probability

distribution P : Ω → R, Let X : Ω → V be a random variable (so

that V ⊆ R), and let a,b ∈ V .

(i) If P(X = b) = 1 then E[X ] = b.

(ii) If P(a < X ≤ b) = 1 then a < E[X ] ≤ b.

(iii) If g,h : R → R (and these are total functions) then

E[g(X ) + h(X )] = E[g(X )] + E[h(X )].

Proof: This is left as an exercise.
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A Useful Result about Expectation

Theorem #3 (Basic Inequality): Let Ω be a finite sample

space with probability distribution P : Ω → R, let X : Ω → R be a

random variable, and let h : R → R be a total function such that

h(x) ≥ 0 for all x ∈ R.

Then, for every real number a such that a > 0,

P(h(X ) ≥ a) ≤
E[h(X )]

a
.

A proof of this is given in a supplemental document for this

lecture.
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Markov’s Inequality

Corollary #4 (Markov’s Inequality): Let Ω be a finite sample

space with probability distribution P : Ω → R, and let X : Ω → R

be a random variable. Then, for every positive real number a,

P(|X | ≥ a) ≤
E[|X |]

a
.

Proof: This is a straightforward consequence of the “Basic

Inequality”.
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Applying Markov’s Inequality in an Example

Example: Once again, consider the experiment in which

n coins are tossed.

• The sample space is

Ωn = {(α1, α2, . . . , αn) | α1, α2, . . . , αn ∈ {H,T}}

— a set with size 2n.

• Suppose that

P : Ωn → R

is the uniform distribution, so that P(~α) = 2−n for all

~α ∈ Ωn.

• Let X : Ωn → R be the random variable representing the

number of heads tossed.
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Applying Markov’s Inequality in an Example
Then

X = X1 + X2 + · · ·+ Xn

where, for 1 ≤ i ≤ n, and ~α = (α1, α2, . . . , αn) ∈ Ωn,

Xi(~α) =

{

1 if αi = H,

0 if αi = T.

• If

Ai = {~α = (α1, α2, . . . , αn) ∈ Ωn | αi = H}

then |Ai | = 2n−1 and, for ~α ∈ Ωn,

Xi(~α) =

{

1 if ~α ∈ Ai ,

0 if ~α /∈ Ai .

• This can be used to prove that E[Xi ] = P(Ai) =
|Ai |
|Ω| =

1
2 .
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Applying Markov’s Inequality in an Example

• Since X = X1 + X2 + · · ·+ Xn it now follows by Linearity of

Expectation that

E[X ] = E[X1 + X2 + · · ·+ Xn]

=
n

∑

i=1

E[Xi ]

=

n
∑

i=1

1

2

=
n

2
.
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Applying Markov’s Inequality in an Example

Markov’s Inequality can now be used to bound that least 3n
4

heads are tossed, because this is

P(X ≥ 3n
4 ) ≤

E[X ]

(3n/4)

=
n/2

3n/4

=
1

2
×

4

3

=
2

3
.
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Variance and Standard Deviation

Definition: Let Ω be a sample space with probability

distribution P : Ω → R, and let X : Ω → R. Then the variance

of X , with respect to P, is

var(X ) =
∑

µ∈Ω
(X (µ)− E[X ])2 × P(µ)

and the standard deviation of X , denoted σ(X ), is
√

var(X ).
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Variance and Standard Deviation

Example Suppose that we are tossing three coins — so that

the sample space is

Ω3 = {(H,H,H), (H,H,T), (H,T,H), (H,T,T)

(T,H,H), (T,H,T), (T,T,H), (T,T,T)}.

Suppose, again, that we we are tossing a fair coin — so that

the probability distribution used is the probability distribution

used is the uniform probability distribution P : Ω3 → R —

that is,

P(~α) =
1

|Ω3|
=

1

8

for every outcome ~α ∈ Ω3.
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Variance and Standard Deviation

Now

• X ((H,H,H)) = 3,

• X ((H,H,T)) = X ((H,T,H)),X ((T,H,H)) = 2,

• X ((H,T,T)) = X ((T,H,T)) = X ((T,T,H)) = 1, and

• X ((T,T,T)) = 0.

As noted above (since n = 3 here), E[X ] = 3
2
.
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Variance and Standard Deviation

var(X ) =
∑

~α∈Ω3

(X (~α)− E[X ])2 × P(~α)

=
(

X (H,H,H) = 3
2

)2
× P((H,H,H))

+
(

X (H,H,T) = 3
2

)2
× P((H,H,T))

+
(

X (H,T,H) = 3
2

)2
× P((H,T,H))

+
(

X (H,T,T) = 3
2

)2
× P((H,T,T))

+
(

X (T,H,H) = 3
2

)2
× P((T,H,H))

+
(

X (T,H,T) = 3
2

)2
× P((T,H,T))

+
(

X (T,T,H) = 3
2

)2
× P((T,T,H))

+
(

X (T,T,T) = 3
2

)2
× P((T,T,T))
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Variance and Standard Deviation

=
(

3 − 3
2

)2
× 1

8
+

(

2 − 3
2

)2
× 1

8

+
(

2 − 3
2

)2
× 1

8
+

(

1 − 3
2

)2
× 1

8

+
(

2 − 3
2

)2
× 1

8 +
(

1 − 3
2

)2
× 1

8

+
(

1 − 3
2

)2
× 1

8 +
(

0 − 3
2

)2
× 1

8

= 9
4
× 1

8
+ 1

4
× 1

8
+ 1

4
× 1

8
+ 1

4
× 1

8

+ 1
4 × 1

8 + 1
4 × 1

8 + 1
4 × 1

8 + 9
4 × 1

8

= 24
32 = 3

4 .

It follows that the standard deviation of X , σ(X ), is
√

(3/4) =
√

3
2 .
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Alternative Form of Variance

Theorem #5: Let Ω be a finite sample space, let P : Ω → R be

a probability distribution for Ω, and let X be a random variable.

Then X 2 is also a random variable, and

var(X ) = E[X 2]− E[X ]2.

Once again, a proof of this claim is included in the

supplemental document for this lecture.
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Alternate Form of Variance

Continuation of Example: Suppose, again, that the sample

space is Ω3 and we are tossing a fair coin, so that P : Ω3 → R is

the uniform probability distribution. Once again, let X : Ω3 → R

be the number of heads tossed, so that X 2 : Ω3 → R is the

random variable with the following values.

• X 2((H,H,H)) = (X (H,H,H))2 = 32 = 9.

• X 2((H,H,T)) = (X (H,H,T))2 = 22 = 4.

• X 2((H,T,H)) = (X (H,T,H))2 = 22 = 4.

• X 2((H,T,T)) = (X (H,T,T))2 = 12 = 1.

• X 2((T,H,H)) = (X (T,H,H))2 = 22 = 4.

• X 2((T,H,T)) = (X (T,H,T))2 = 12 = 1.

• X 2((T,T,H)) = (X (T,T,H))2 = 12 = 1.

• X 2((T,T,T)) = (X (T,T,T))2 = 02 = 0.
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Alternate Form of Variance

Thus

E[X 2] =
∑

~α∈Ω3

X 2(~α)× P(~α)

= X 2((H,H,H))× P((H,H,H)) + X 2((H,H,T))× P((H,H,T))

+ X 2((H,T,H))× P((H,T,H)) + X 2((H,T,T))× P((H,T,T))

+ X 2((T,H,H))× P((T,H,H)) + X 2((T,H,T))× P((T,H,T))

+ X 2((T,T,H))× P((T,T,H)) + X 2((T,T,T))× P((T,T,T))

= 9 × 1
8 + 4 × 1

8 + 4 × 1
8 + 1 × 1

8

+ 4 × 1
8 + 1 × 1

8 + 1 × 1
8 + 0 × 1

8

= 24
8
= 3.
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Alternate Form of Variance

It follows, by Theorem #5, that

var(X ) = E[X 2]− E[X ]2 = 3 −
(

3
2

)2
= 3 − 9

4 = 3
4

— as also shown using definition of the variance of X , above.
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Using Pairwise Independence

Suppose Ω is a sample space with probability distribution

P : Ω → R, and let X ,Y : Ω → R be random variables over Ω.

• It is not generally the case that var(X + Y ) is equal to

var(X ) + var(Y ).
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Using Pairwise Independence

Example: Consider the previous example — so that the

sample space is Ω3, P : Ω3 → R is the uniform probability

distribution, and X : Ω3 → R is the random variable

representing the number of heads tossed. Let Y = X .

• E[(X + Y )2] = E[(2X )2] = E[4X 2] = 4E[X 2] = 4 × 3 = 12.

• E[X + Y ]2 = E[2X ]2 = (2E[X ])2

= 4E[X ]2 = 4 ×
(

3
2

)2
= 9.

• Thus var(X + Y ) = E[(X + Y )2]− E[X + Y ]2

= 12 − 9 = 3.

• var(X ) + var(Y ) = var(X ) + var(X ) = 3
4
+ 3

4
= 3

2
.

• Thus var(X + Y ) 6= var(X ) + var(Y ).
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Using Pairwise Independence

However, something like this can be shown for a useful special

case.

Theorem #6: Let Ω be a finite sample space with probability

distribution P : Ω → R and let X1,X2, . . . ,Xn : Ω → R be random

variables (for some positive integer n). If X1,X2, . . . ,Xn are

pairwise independent then

var(X1 + X2 + · · ·+ Xn) = var(X1) + var(X2) + · · ·+ var(Xn).

Once again, the supplemental document for this lecture

contains a proof of this result.
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Using Pairwise Independence
Example: Once again, considering the experiment of tossing a

sequence of n fair coins, where n ≥ 2, so that the sample

space is the set

Ωn = {(α1, α2, . . . , αn) | αi ∈ {H,T} for 1 ≤ i ≤ n}

with size 2n, and P : Ωn → R is the uniform probability

distribution. Once again, let X be the random variable whose

value is the number of heads tossed, so that

X = X1 + X2 + · · ·+ Xn

where Xi : Ωn → R is the random variable such that, for

~α = (α1, α2, . . . αn) ∈ Ωn,

Xi(~α) =

{

1 if αi = H,

0 if αi = T.

for 1 ≤ i ≤ n.
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Using Pairwise Independence

Since Xi is an indicator random variable, it can be shown that

E[Xi ] = P(Xi = 1) = 1
2

for 1 ≤ i ≤ n, and it follows by Linearity of Expectation that

E[X ] = E[X1 + X2 + · · ·+ Xn]

= E[X1] + E[X2] + · · · + E[Xn]

=

n
∑

i=1

E[Xi ]

=

n
∑

i=1

1
2

= n
2
.
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Using Pairwise Independence

Since Xi is an indicator random variable, X 2
i is the same

random variable as X , so that

E[X 2
i ] = E[Xi ] =

1
2

and — by Theorem #5 —

var(Xi) = E[X 2
i ]− E[Xi ]

2 = 1
2
−

(

1
2

)2
= 1

4
.
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Using Pairwise Independence

Let i and j be integers such that 1 ≤ i , j ≤ n and i 6= j , and let

βi , βj ∈ {H,T}.

• The set

“αi = βi and αj = βj ”

= {(α1, α2, . . . , αn) ∈ Ωn | αi = βi and αj = βj}

has size 2n−2, since each of the values αh such that

1 ≤ h ≤ n and h /∈ {i , j} can be chosen freely from {H,T}.

Thus

P(αi = βi and αj = βj) =
2n−2

2n = 1
4 .
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Using Pairwise Independence

• Since P(αh = H) = P(αh = T) = 1
2 for every integer h such

that 1 ≤ h ≤ n,

P(αi = βi)× P(αj = βj) =
1
2 × 1

2 = 1
4

as well.

• Thus P(αi = βi and αj = βj) = P(αi = βi)× P(αj × βj) for

all values βi , βj ∈ {0,1} and (since Xi and Xj are indicator

random variables) this establishes that the random

variables Xi and Xj are independent.

• Since this is true for all choices of integers i and j such that

1 ≤ i , j ≤ n and i 6= j , the random variables

X1,X2, . . . ,Xn

are pairwise independent.
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Using Pairwise Independence

It now follows, by Theorem #6, above, that

var(X ) = var(X1 + X2 + · · · + Xn)
(since X = X1 + X2 + · · ·+ Xn)

= var(X1) + var(X2) + · · · + var(Xn)
(since X1,X2, . . . ,Xn

are pairwise independent)

=

n
∑

i=1

var(Xi)

=

n
∑

i=1

1
4

= n
4 .
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Chebyshev’s Inequality

Theorem #7: Let Ω be a finite sample space with probability

distribution P : Ω → R, let X be a random variable, and let

a ∈ R such that a > 0. Then

P(|X | ≥ a) ≤
E[X 2]

a2
.

The lecture presentation will include a proof of Chebyshev’s

Inequality.
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Chebyshev’s Inequality

Example: Consider the sample space Ωn, probability

distribution P : Ωn → R and random variables X ,X1,X2, . . . ,Xn

from the previous example — so that

X = X1 + X2 + · · ·+ Xn.

• As noted above, E[X ] = n
2 and var(X ) = n

4 .

• Since var(X ) = E[X 2]− E[X ]2, by Theorem #5, it follows

that

E[X 2] = var(X ) + E[X ]2 = n
4 +

(

n
2

)2
= n2+n

4 .
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Chebyshev’s Inequality

Once again, let us consider the probability that X ≥ 3n
4 . Since

X is a non-negative random variable, X = |X |, and it follows by

Chebyshev’s Inequality (with a = 3n
4

) that

P(X ≥ 3n
4 ) = P(|X | ≥ 3n

4 )

≤
E[X 2]

(3n/4)2

=
(n2 + n)/4

9n2/16

= 4
9
×

(

1 + 1
n

)

— a considerably smaller bound than the bound that was

obtained above, with Markov’s Inequality, when n is large.
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Cantelli’s Inequality

Theorem #8: Let Σ be a finite sample space with probability

distribution P : Ω → R, let X : Ω → R be a random variable, and

let a ∈ R such that a > 0. Then

P(X − E[X ] ≥ a) ≤
var(X )

a2 + var(X )
.

• This result is sometimes called the “One-Sided

Chebyshev’s Inequality”.

• A proof of this will be considered in the tutorial exercise for

this topic.
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Cantelli’s Inequality

Once again, consider the sample space Ωn, probability

distribution P : Ωn → R, and the above random

variable X : Ωn → R — so that E[X ] = n
2

and var(X ) = n
4
.

P(X ≥ 3n
4 ) = P(X − E[X ] ≥ n

4) (since E[X ] = n
2 )

≤
var(X )

(n/4)2 + var(X )
(by Canelli’s Inequality)

=
n/4

(n/4)2 + (n/4)
(since var(X ) = n

4 )

=
4

n + 4

— a bound with approaches 0 as n approaches +∞, and which

is a much better bound than can be obtained using either

Markov’s Inequality or Chebyshev’s Inequality, when n is large.
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The Chernoff Bound

The Chernoff Bound cannot be used in all the cases when the

above can — but can provide significantly better results, when it

is applicable. A sketch of a proof is given in the supplemental

document

Theorem #9: Let Ω be a finite sample space with probability

distribution P : Ω → R. Suppose that X1,X2, . . . ,Xn are mutually

independent random variables such that Xi : Ω → {0,1} for

1 ≤ i ≤ n, and suppose that P(Xi = 1) = p for every integer i

such that 1 ≤ i ≤ n, for a real number p such that 0 ≤ p ≤ 1.

Let X = X1 + X2 + · · ·+ Xn. Then, for every real number θ such

that 0 ≤ θ ≤ 1,

P(X ≥ (1 + θ)pn) ≤ e− θ
2

3
pn.
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The Chernoff Bound
Example: Once again, consider the experiment of tossing a

sequence of n fair coins, where n ≥ 2, so that the sample

space is the set

Ωn = {(α1, α2, . . . , αn) | αi ∈ {H,T} for 1 ≤ i ≤ n}

with size 2n, and P : Ωn → R is the uniform probability

distribution. Once again, let X be the random variable whose

value is the number of heads tossed, so that

X = X1 + X2 + · · ·+ Xn

where Xi : Ωn → R is that random variable such that, for

~α = (α1, α2, . . . , αn) ∈ Ωn,

Xi(~α) =

{

1 if αi = H,

0 if αi = T.
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The Chernoff Bound

• Since the uniform probability distribution is being used,

it can be shown that the random variables X1,X2, . . . ,Xn

are mutually independent.

• Xi : Ωn → {0,1} for every integer i such that 1 ≤ i ≤ n.

• P(Xi = 1) = p for every integer i such that 1 ≤ i ≤ n, when

p = 1
2
.

• X = X1 + X2 + · · ·+ Xn.

• Thus the conditions, included in the statement of the

Chernoff Bound, are satisfied.
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The Chernoff Bound

• Let θ = 1
2 . Then

(1 + θ)pn = 3
2
× 1

2
× n = 3n

4
,

so that it now follows, by the Chernoff Bound, that

P(X ≥ 3n
4 ) = P(X ≥ (1 + θ)pn) (for θ = p = 1

2 )

≤ e− θ
2

3
pn

= e− n
12 .
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The Chernoff Bound

• Like the bound obtained using Cantelli’s Inequality, this

bound approaches 0 as n approaches +∞.

• While the results given before this might give smaller

bounds when n is quite small, this result gives smaller

(and, therefore, better) bounds when n is large — because

the bound, given here, approaches 0 much more quickly

than the bound obtained using Cantelli’s Inequality.
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What About Countably Infinite Sample Spaces?

• Results like the ones given in these notes can also be

established for countably infinite sample spaces when

additional technical conditions are satisfied.

• This will be discussed in another supplemental document

for this topic.
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