Lecture #21: Tail Bounds Proofs of Claims

Proof of the Basic Inequality

Theorem 3 (Basic Inequality). Let Ω be a finite sample space with probability distribution $\mathsf{P}: \Omega \to \mathbb{R}$, let $X: \Omega \to \mathbb{R}$ be a random variable, and let $h: \mathbb{R} \to \mathbb{R}$ be a total function such that

$$h(x) \ge 0$$
 for all $x \in \mathbb{R}$.

Then, for every real number a such that a > 0,

$$\mathsf{P}(h(X) \ge a) \le \frac{\mathsf{E}[h(X)]}{a}.$$

Proof. Suppose, to obtain a contradiction, that

$$\mathsf{P}(h(X) \ge a) > \frac{\mathsf{E}[h(X)]}{a}.$$

Then, since a > 0 it follows (by multiplying both sides of the inequality by a) that

$$a \times \mathsf{P}(h(X) \ge a) > \mathsf{E}[h(X)]. \tag{1}$$

Now (since Ω is a finite, and one can reorder the terms in a finite sum without changing its value)

$$\begin{split} \mathsf{E}[h(X)] &= \sum_{\mu \in \Omega} h(X(\mu)) \times \mathsf{P}(\mu) \\ &= \sum_{\substack{\mu \in \Omega \\ h(X(\mu)) < a}} h(X(\mu)) \times \mathsf{P}(\mu) + \sum_{\substack{\mu \in \Omega \\ h(X(\mu)) \geq a}} h(X(\mu)) \times \mathsf{P}(\mu) & \text{(splitting the sum)} \\ &\geq \sum_{\substack{\mu \in \Omega \\ h(X(\mu)) < a}} 0 \times \mathsf{P}(\mu) + \sum_{\substack{\mu \in \Omega \\ h(\mu) \geq a}} h(X(\mu)) \times \mathsf{P}(\mu) \\ & \text{(since } h(X(\mu)) \geq 0 \text{ and } \mathsf{P}(\mu) \geq 0 \text{ for every outcome } \mu \in \Omega) \end{split}$$

$$\begin{split} &= \sum_{\substack{\mu \in \Omega \\ h(X(\mu)) \geq a}} h(X(\mu)) \times \mathsf{P}(\mu) \\ &\geq \sum_{\substack{\mu \in \Omega \\ h(X(\mu)) \geq a}} a \times \mathsf{P}(\mu) \qquad (\text{again, since } \mathsf{P}(\mu) \geq 0 \text{ for every outcome } \mu \in \Omega) \\ &= a \times \sum_{\substack{\mu \in \Omega \\ h(X(\mu)) \geq a}} \mathsf{P}(\mu) \\ &= a \times \mathsf{P}(h(X) \geq a) \\ &> \mathsf{E}[X] \qquad (\text{by the inequality at line (1), above).} \end{split}$$

Thus E[h(X)] > E[h(X)] — which is impossible, since a real number cannot be strictly greater than itself. Since a *assumption* has been obtained, the assumption must be false — and

$$\mathsf{P}(h(X) \ge a) \le \frac{\mathsf{E}[h(X)]}{a},$$

as claimed.

Proof of Markov's Inequality

Corollary 4 (Markov's Inequality). Let Ω be a finite sample space with probability distribution $\mathsf{P}: \Omega \to \mathbb{R}$, and let $X: \Omega \to \mathbb{R}$ be a random variable. Then, for every **positive** real number a,

$$\mathsf{P}(|X| \ge a) \le \frac{\mathsf{E}[|X|]}{a}.$$

Proof. This follows immediately from Theorem 3: In particular, Markov's Inequality follows by an application of the Basic Inequality, using the function $h : \mathbb{R} \to \mathbb{R}$ such that h(x) = |x| for every real number x.

Alternative Form of Variance

Theorem 5. Let Ω be a finite sample space, let $P : \Omega \to \mathbb{R}$ be a probability distribution for Ω , and let X be a random variable. Then X^2 is also a random variable, and

$$\operatorname{var}(X) = \mathsf{E}[X^2] - \mathsf{E}[X]^2.$$

Proof. Since Ω is a finite sample space,

as claimed.

Using Pairwise Independence

Theorem 6. Let Ω be a finite sample space with probability distribution $P : \Omega \to \mathbb{R}$ and let $X_1, X_2, \ldots, X_n : \Omega \to \mathbb{R}$ be random variables (for some positive integer *n*). If X_1, X_2, \ldots, X_n are pairwise independent then

$$\operatorname{var}(X_1 + X_2 + \dots + X_n) = \operatorname{var}(X_1) + \operatorname{var}(X_2) + \dots + \operatorname{var}(X_n).$$

Recall, from Lecture #20, that the expected values of random variables are not generally "multiplicative". As the following claim states, they *are* multiplicative when the random variables are independent.

Claim. Let Ω be a finite sample space with probability distribution $P : \Omega \to \mathbb{R}$, and let $X, Y : \Omega \to \mathbb{R}$ be independent random variables (with respect to P). Then

$$\mathsf{E}[X \times Y] = \mathsf{E}[X] \times \mathsf{E}[Y].$$

Proof. Since the sample space Ω is finite there is a finite set of values

$$V_X = \{\alpha_1, \alpha_2, \dots \alpha_k\} \subseteq \mathbb{R}$$

such that, if

$$S_i = \{ \mu \in \Omega \mid X(\mu) = \alpha_i \}$$

for $1 \leq i \leq k$, then $S_i \neq \emptyset$ for $1 \leq i \leq k$ and

$$S_1 \cup S_2 \cup \cdots \cup S_k = \Omega.$$

Assuming (as the above notation may suggest) that $\alpha_1, \alpha_2, \ldots, \alpha_k$ are distinct (so that $|V_X| = k$), $S_i \cap S_j = \emptyset$, as well, for $1 \le i, j \le k$ such that $i \ne j$.

Now

$$\begin{split} \mathsf{E}[X] &= \sum_{\mu \in \Omega} X(\mu) \times \mathsf{P}(\mu) \\ &= \sum_{i=1}^{k} \left(\sum_{\mu \in S_{i}} X(\mu) \times \mathsf{P}(\mu) \right) \\ &= \sum_{i=1}^{k} \left(\sum_{\mu \in S_{i}} \alpha_{i} \times \mathsf{P}(\mu) \right) \\ &= \sum_{i=1}^{k} \left(\alpha_{i} \times \sum_{\mu \in S_{i}} \mathsf{P}(\mu) \right) \\ &= \sum_{i=1}^{k} \alpha_{i} \times \mathsf{P}(S_{i}) \\ &= \sum_{i=1}^{k} \alpha_{i} \times \mathsf{P}(X = \alpha_{i}). \end{split}$$

(reordering terms)

(since
$$X(\mu) = \alpha_i$$
 for every outcome $\mu \in S_i$)

Similarly, there is a finite set of values

$$V_Y = \{\beta_1, \beta_2, \dots \beta_\ell\} \subseteq \mathbb{R}$$

such that, if

$$T_i = \{ \mu \in \Omega \mid Y(\mu) = \beta_i \}$$

for $1 \leq i \leq \ell$, then $T_i \neq \emptyset$ for $1 \leq i \leq \ell$ and

$$T_1 \cup T_2 \cup \cdots \cup T_\ell = \Omega.$$

Assuming (as the above notation may suggest) that $\beta_1, \beta_2, \ldots, \beta_\ell$ are distinct (so that $|V_Y| = \ell$), $T_i \cap T_j = \emptyset$, as well, for $1 \le i, j \le \ell$ such that $i \ne j$. Repeating the above argument (replacing X with Y and the set V_X with V_Y) that

$$\mathsf{E}[Y] = \sum_{j=1}^{\ell} \beta_j \times \mathsf{P}(Y = \beta_j).$$

Note that, for every outcome $\mu \in \Omega$, there exists *exactly one* pair of integers i and j such that $\mu \in S_i \cap T_j$. Thus

$$\begin{split} \mathsf{E}[X\times Y] &= \sum_{\mu\in\Omega} (X\times Y)(\mu)\times\mathsf{P}(\mu) \\ &= \sum_{\mu\in\Omega} X(\mu)\times Y(\mu)\times\mathsf{P}(\mu) \\ &= \sum_{i=1}^{k}\sum_{j=1}^{\ell} \left(\sum_{\mu\in S_{i}\cap T_{j}} X(\mu)\times Y(\mu)\times\mathsf{P}(\mu)\right) \qquad (\text{reordering terms}) \\ &= \sum_{i=1}^{k}\sum_{j=1}^{\ell} \left(\sum_{\mu\in S_{i}\cap T_{j}} \alpha_{i}\times\beta_{j}\times\mathsf{P}(\mu)\right) \qquad (\text{by the definitions of } S_{i} \text{ and } T_{j}) \\ &= \sum_{i=1}^{k}\sum_{j=1}^{\ell} \left(\alpha_{i}\times\beta_{j}\times\sum_{\mu\in S_{i}\cap T_{j}}\mathsf{P}(\mu)\right) \\ &= \sum_{i=1}^{k}\sum_{j=1}^{\ell} (\alpha_{i}\times\beta_{j}\times\mathsf{P}(\mu\in S_{i}\cap T_{j})) \\ &= \sum_{i=1}^{k}\sum_{j=1}^{\ell} (\alpha_{i}\times\beta_{j}\times\mathsf{P}(\mu\in S_{i} \text{ and } \mu\in S_{j})) \\ &= \sum_{i=1}^{k}\sum_{j=1}^{\ell} (\alpha_{i}\times\beta_{j}\times\mathsf{P}(X=\alpha_{i} \text{ and } Y=\beta_{j})) \qquad (\text{by the definitions of } S_{i} \text{ and } T_{j}) \\ &= \sum_{i=1}^{k}\sum_{j=1}^{\ell} (\alpha_{i}\times\beta_{j}\times\mathsf{P}(X=\alpha_{i})\times\mathsf{P}(Y=\beta_{j})) \\ &= \sum_{i=1}^{k}\sum_{j=1}^{\ell} (\alpha_{i}\times\beta_{j}\times\mathsf{P}(X=\alpha_{i})\times\mathsf{P}(X=\alpha_{i})\times\mathsf{P}(X=\alpha_{i}) \\ &= \sum_{i=1}^{k}\sum_{j=1}^{\ell} (\alpha_{i}\times\beta_{j}\times\mathsf{P}(X=\alpha_{i})\times\mathsf{P}(X=\alpha_{i}) \\ &= \sum$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{\ell} (\alpha_i \times \mathsf{P}(X = \alpha_i)) \times (\beta_j \times \mathsf{P}(Y = \beta_j))$$
$$= \left(\sum_{i=1}^{k} \alpha_i \times \mathsf{P}(X = \alpha_i)\right) \times \left(\sum_{j=1}^{\ell} \beta_j \times \mathsf{P}(Y = \beta_j)\right)$$
(rec

(reordering terms, once again)

$$=\mathsf{E}[X]\times\mathsf{E}[Y],$$

as claimed.

Proof of Theorem 6. Let

$$X = X_1 + X_2 + \dots + X_n.$$

Then, by Theorem 5, above,

$$\begin{aligned} \operatorname{var}(X) &= \operatorname{\mathsf{E}}[X^2] - \operatorname{\mathsf{E}}[X]^2 \\ &= \operatorname{\mathsf{E}}\left[\left(\sum_{i=1}^n X_i\right)^2\right] - \left(\operatorname{\mathsf{E}}\left[\sum_{i=1}^n X_i\right]\right)^2 \\ &= \operatorname{\mathsf{E}}\left[\sum_{i=1}^n \sum_{j=1}^n X_i \times X_j\right] - \left(\operatorname{\mathsf{E}}\left[\sum_{i=1}^n X_i\right]\right)^2 \\ &= \sum_{i=1}^n \sum_{j=1}^n \operatorname{\mathsf{E}}[X_i \times X_j] - \left(\sum_{i=1}^n \operatorname{\mathsf{E}}[X_i]\right)^2 \\ &= \sum_{i=1}^n \sum_{j=a}^n \operatorname{\mathsf{E}}[X_i \times X_j] - \sum_{i=1}^n \sum_{j=1}^n \operatorname{\mathsf{E}}[X_i] \times \operatorname{\mathsf{E}}[X_j] \\ &= \sum_{i=1}^n \left(\operatorname{\mathsf{E}}[X_i^2] - \operatorname{\mathsf{E}}[X_i]^2\right) + \sum_{\substack{1 \le i, j \le n \\ i \ne j}} \left(\operatorname{\mathsf{E}}[X_i \times X_j] - \operatorname{\mathsf{E}}[X_i] \times \operatorname{\mathsf{E}}[X_j]\right) \end{aligned}$$

(reordering terms, again)

$$= \sum_{i=1}^{n} \left(\mathsf{E}[X_i^2] - \mathsf{E}[X_i]^2 \right) + \sum_{\substack{1 \le i, j \le n \\ i \ne j}} \left(\mathsf{E}[X_i] \times \mathsf{E}[X_j] - \mathsf{E}[X_i] \times \mathsf{E}[j] \right)$$

(by the above claim, since X_i and X_j are *independent* if $i \neq j$)

$$= \sum_{i=1}^{n} \left(\mathsf{E}[X_i^2] - \mathsf{E}[X_i]^2 \right) + \sum_{\substack{1 \le i, j \le n \\ i \ne j}} 0$$

$$= \sum_{i=1}^{n} \left(\mathsf{E}[X_i^2] - \mathsf{E}[X_i]^2 \right)$$

$$= \sum_{i=1}^{n} \operatorname{var}(X_i).$$

That is,

$$\operatorname{var}(X_1 + X_2 + \dots + X_n) = \operatorname{var}(X_1) + \operatorname{var}(X_2) + \dots + \operatorname{var}(X_n),$$

as claimed.

Chebyshev's Inequality and Cantelli's Inequality

The lecture notes also include results that can be applied, to used the expected values of variances of random variables to establish tail bounds, namely, *Chebyshev's Inequality* and *Cantelli's Inequality* (stated as Theorem 7 and Theorem 8, respectively). These will be considered in the lecture presentation and the tutorial exercise for this topic.

Proof of the Chernoff Bound

Theorem 9 (The Chernoff Bound). Let Ω be a finite sample space with probability distribution Pr : $\Omega \to \mathbb{R}$. Suppose that X_1, X_2, \ldots, X_n are mutually independent random variables such that $X_i : \Omega \to \{0, 1\}$ for $1 \le i \le n$, and suppose that $P(X_i = 1) = p$ for every integer i such that $1 \le i \le n$, for a real number p such that $0 \le p \le 1$. Let $X = X_1 + X_2 + \cdots + X_n$. Then, for every real number θ such that $0 \le \theta \le 1$,

$$\mathsf{P}(X \ge (1+\theta)pn) \le e^{-\frac{\theta^2}{3}pn}.$$

Sketch of Proof. Let t be any positive real number. Then, since X is a random variable, e^{tX} is a non-negative random variable — and

$$\mathsf{P}(X \ge (1+\theta)pn) = \mathsf{P}(e^{tX} \ge e^{t(1+\theta)pn})$$

Now, since $X = X_1 + X_2 + \dots + X_n$,

$$\mathsf{E}[e^{tX}] = \mathsf{E}[e^{tx_1} \times e^{tx_2} \times \dots \times e^{tx_n}].$$

and, since the random variables x_1, x_2, \ldots, x_n are mutually independent, so are the random variable $e^{tx_1}, e^{tx_2}, \ldots, e^{tx_n}$. This can be used to show, by induction on n, that

$$\mathsf{E}[e^{tX}] = \mathsf{E}[e^{tx_1} \times e^{tx_2} \times \dots \times e^{tx_n}] = \prod_{i=1}^n \mathsf{E}[e^{tx_i}].$$
(2)

Since the random variable x_i only assumes values 0 and 1, with probabilities p and 1 - p respectively, the random variable e^{tx_i} only assumes values $e^0 = 1$ and e^t , with probabilities p and 1 - p respectively, so that

$$\mathsf{E}[e^{tx_i}] = p \cdot 1 + (1-p) \cdot e^t = 1 - p(e^t - 1).$$
(3)

It now follows by the equations at lines (2) and (3) that

$$\mathsf{E}[e^{tX}] = \prod_{i=1}^{n} \mathsf{E}[e^{tx_i}] = (1 + p(e^t - 1))^n.$$

Now recall, by Markov's Inequality, that

$$\mathsf{P}(e^{tX} \ge k \cdot \mathsf{E}[e^{tX}]) \le \frac{1}{k}$$

for any positive real number k. In particular, this is true when $k = e^{t(1+\theta)pn} \cdot E[e^{tX}]^{-1}$, so that

$$\mathsf{P}(e^{tX} \ge e^{t(1+\theta)pn}) \le \frac{\mathsf{E}[e^{tX}]}{e^{t(1+\theta)pn}} = \frac{(1+p(e^t-1))^n}{e^{t(1+\theta)pn}}.$$

A consideration of the Taylor expansion of the function $f(x) = e^x$ can be used to establish that $1 + x \le e^x$ for every positive real number x, so that $(1 + x)^n \le e^{xn}$ for every positive real number x as well. Since t is a positive real number $e^t - 1 > 0$ as well, so that

$$(1+p(e^t-1))^n \le \left(e^{p(e^t-1)}\right)^n = e^{pn(e^t-1)}$$

and it now follows that

$$\mathsf{P}(X \ge (1+\theta)pn) = \mathsf{P}(e^{tX} \ge e^{t(1+\theta)pn}) \le \frac{e^{pn(e^t-1)}}{e^{t(1+\theta)pn}}$$

Now let $t = \ln(1+\theta)$ — which is a positive real number, since $\theta > 0$. Then

$$\mathsf{P}(X \ge (1+\theta)pn) \le \frac{e^{pn(e^t-1)}}{e^{t(1+\theta)pn}}$$
$$= \frac{e^{\theta pn}}{e^{(1+\theta)pn\ln(1+\theta)}}$$
$$= e^{pn(\theta - (1+\theta)\ln(1+\theta))}$$
$$- e^{pnf(\theta)}$$

for the function f such that $f(x) = x - (1+x)\ln(1+x)$ for every positive real number x. Now notice that $f'(x) = -\ln(1+x)$, $f''(x) = -(1+x)^{-1}$, $f^{(3)}(x) = (1+x)^{-2}$, and $f^{(\ell)}(x) = (-1)^{\ell+1} \cdot (\ell-2)!(1+x)^{\ell-1}$ for every integer ℓ such that $\ell \ge 4$. A consideration of a Taylor expansion for f (at 0) confirms that if θ is a real number such that $0 \le \theta \le 1$ then

$$f(\theta) = \sum_{i \ge 2} (-1)^{i-1} \cdot \frac{1}{i \cdot (i-1)} \theta^i$$
$$\leq -\frac{1}{2} \theta^2 + \frac{1}{6} \theta^3$$
$$\leq -\frac{1}{2} \theta^2 + \frac{1}{6} \theta^2$$
$$= -\frac{1}{3} \theta^2.$$

Thus $e^{pnf(\theta)} \leq e^{-\frac{\theta^2}{3}pn},$ and it now follows that

$$\mathsf{P}(X \ge (1+\theta)pn) \le e^{-\frac{\theta^2}{3}pn},$$

2

as claimed.