
Lecture #21: Tail Bounds

Proofs of Claims

Proof of the Basic Inequality

Theorem 3 (Basic Inequality). Let Ω be a finite sample space with probability distribution

P : Ω → R, let X : Ω → R be a random variable, and let h : R → R be a total function such

that

h(x) ≥ 0 for all x ∈ R.

Then, for every real number a such that a > 0,

P(h(X) ≥ a) ≤
E[h(X)]

a
.

Proof. Suppose, to obtain a contradiction, that

P(h(X) ≥ a) >
E[h(X)]

a
.

Then, since a > 0 it follows (by multiplying both sides of the inequality by a) that

a× P(h(X) ≥ a) > E[h(X)]. (1)

Now (since Ω is a finite, and one can reorder the terms in a finite sum without changing its

value)

E[h(X)] =
∑

µ∈Ω

h(X(µ)) × P(µ)

=
∑

µ∈Ω
h(X(µ))<a

h(X(µ)) × P(µ) +
∑

µ∈Ω
h(X(µ))≥a

h(X(µ)) × P(µ) (splitting the sum)

≥
∑

µ∈Ω
h(X(µ))<a

0× P(µ) +
∑

µ∈Ω
h(µ)≥a

h(X(µ)) × P(µ)

(since h(X(µ)) ≥ 0 and P(µ) ≥ 0 for every outcome µ ∈ Ω)
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=
∑

µ∈Ω
h(X(µ))≥a

h(X(µ)) × P(µ)

≥
∑

µ∈Ω
h(X(µ))≥a

a× P(µ) (again, since P(µ) ≥ 0 for every outcome µ ∈ Ω)

= a×
∑

µ∈Ω
h(X(µ))≥a

P(µ)

= a× P(h(X) ≥ a)

> E[X] (by the inequality at line (1), above).

Thus E[h(X)] > E[h(X)] — which is impossible, since a real number cannot be strictly greater

than itself. Since a assumption has been obtained, the assumption must be false — and

P(h(X) ≥ a) ≤
E[h(X)]

a
,

as claimed.

Proof of Markov’s Inequality

Corollary 4 (Markov’s Inequality). Let Ω be a finite sample space with probability distribution

P : Ω → R, and let X : Ω → R be a random variable. Then, for every positive real number a,

P(|X| ≥ a) ≤
E[|X|]

a
.

Proof. This follows immediately from Theorem 3: In particular, Markov’s Inequality follows by

an application of the Basic Inequality, using the function h : R → R such that h(x) = |x| for

every real number x.

Alternative Form of Variance

Theorem 5. Let Ω be a finite sample space, let P : Ω → R be a probability distribution for Ω,

and let X be a random variable. Then X2 is also a random variable, and

var(X) = E[X2]− E[X]2.
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Proof. Since Ω is a finite sample space,

var(X) =
∑

µ∈Ω

(X(µ)− E[X])2 × P(µ)

=
∑

µ∈Ω

(X(µ)2 − 2E[X]×X(µ) + E[X]2)× P(µ)

=





∑

µ∈Ω

X(µ)2 × P(µ)



−





∑

µ∈Ω

2E[X]×X(µ)× P(µ)



+





∑

µ∈Ω

E[X]2 × P(µ)





(reordering terms)

= E[X2]− 2E[X]×





∑

µ∈Ω

X(µ)× P(µ)



 + E[X]2 ×
∑

µ∈Ω

P(µ)

= E[X2]− 2E[X]× E[X] + E[X]2 × 1

= E[X2]− 2E[X]2 + E[X]2

= E[X2]− E[X]2,

as claimed.

Using Pairwise Independence

Theorem 6. Let Ω be a finite sample space with probability distribution P : Ω → R and let

X1,X2, . . . ,Xn : Ω → R be random variables (for some positive integer n). If X1,X2, . . . ,Xn

are pairwise independent then

var(X1 +X2 + · · · +Xn) = var(X1) + var(X2) + · · ·+ var(Xn).

Recall, from Lecture #20, that the expected values of random variables are not generally “mul-

tiplicative”. As the following claim states, they are multiplicative when the random variables are

independent.

Claim. Let Ω be a finite sample space with probability distribution P : Ω → R, and let X,Y :
Ω → R be independent random variables (with respect to P). Then

E[X × Y ] = E[X]× E[Y ].

Proof. Since the sample space Ω is finite there is a finite set of values

VX = {α1, α2, . . . αk} ⊆ R
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such that, if

Si = {µ ∈ Ω | X(µ) = αi}

for 1 ≤ i ≤ k, then Si 6= ∅ for 1 ≤ i ≤ k and

S1 ∪ S2 ∪ · · · ∪ Sk = Ω.

Assuming (as the above notation may suggest) that α1, α2, . . . , αk are distinct (so that |VX | =
k), Si ∩ Sj = ∅, as well, for 1 ≤ i, j ≤ k such that i 6= j.

Now

E[X] =
∑

µ∈Ω

X(µ)× P(µ)

=

k
∑

i=1





∑

µ∈Si

X(µ) × P(µ)



 (reordering terms)

=
k
∑

i=1





∑

µ∈Si

αi × P(µ)



 (since X(µ) = αi for every outcome µ ∈ Si)

=

k
∑

i=1



αi ×
∑

µ∈Si

P(µ)





=

k
∑

i=1

αi × P(Si)

=

k
∑

i=1

αi × P(X = αi).

Similarly, there is a finite set of values

VY = {β1, β2, . . . βℓ} ⊆ R

such that, if

Ti = {µ ∈ Ω | Y (µ) = βi}

for 1 ≤ i ≤ ℓ, then Ti 6= ∅ for 1 ≤ i ≤ ℓ and

T1 ∪ T2 ∪ · · · ∪ Tℓ = Ω.

Assuming (as the above notation may suggest) that β1, β2, . . . , βℓ are distinct (so that |VY | =
ℓ), Ti ∩ Tj = ∅, as well, for 1 ≤ i, j ≤ ℓ such that i 6= j. Repeating the above argument

(replacing X with Y and the set VX with VY ) that

E[Y ] =

ℓ
∑

j=1

βj × P(Y = βj).
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Note that, for every outcome µ ∈ Ω, there exists exactly one pair of integers i and j such that

µ ∈ Si ∩ Tj . Thus

E[X × Y ] =
∑

µ∈Ω

(X × Y )(µ)× P(µ)

=
∑

µ∈Ω

X(µ) × Y (µ)× P(µ)

=
k
∑

i=1

ℓ
∑

j=1





∑

µ∈Si∩Tj

X(µ)× Y (µ)× P(µ)



 (reordering terms)

=

k
∑

i=1

ℓ
∑

j=1





∑

µ∈Si∩Tj

αi × βj × P(µ)



 (by the definitions of Si and Tj)

=
k
∑

i=1

ℓ
∑

j=1



αi × βj ×
∑

µ∈Si∩Tj

P(µ)





=
k
∑

i=1

ℓ
∑

j=1

(αi × βj × P(µ ∈ Si ∩ Tj))

=
k
∑

i=1

ℓ
∑

j=1

(αi × βj × P(µ ∈ Si and µ ∈ Sj))

=
k
∑

i=1

ℓ
∑

j=1

(αi × βj × P(X = αi and Y = βj)) (by the definitions of Si and Tj)

=

k
∑

i=1

ℓ
∑

j=1

(

αi × βj × P(X = αi)× P(Y = β)
)

(since X and Y are independent random variables)

=

k
∑

i=1

ℓ
∑

j=1

(αi × P(X = αi))× (βj × P(Y = βj))

=

(

k
∑

i=1

αi × P(X = αi)

)

×





ℓ
∑

j=1

βj × P(Y = βj)





(reordering terms, once again)

= E[X] × E[Y ],

as claimed.
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Proof of Theorem 6. Let

X = X1 +X2 + · · · +Xn.

Then, by Theorem 5, above,

var(X) = E[X2]− E[X]2

= E
[

(
∑n

i=1 Xi)
2
]

− (E [
∑n

i=1 Xi])
2

= E
[

∑n
i=1

∑n
j=1Xi ×Xj

]

− (E [
∑n

i=1Xi])
2

=

n
∑

i=1

n
∑

j=1

E[Xi ×Xj ]−

(

n
∑

i=1

E[Xi]

)2

(by Linearity of Expectation)

=
n
∑

i=1

n
∑

j=a

E[Xi ×Xj ]−
n
∑

i=1

n
∑

j=1

E[Xi]× E[Xj ] (reordering terms)

=

n
∑

i=1

(

E[X2
i ]− E[Xi]

2
)

+
∑

1≤i,j≤n
i 6=j

(E[Xi ×Xj ]− E[Xi]× E[Xj ])

(reordering terms, again)

=
n
∑

i=1

(

E[X2
i ]− E[Xi]

2
)

+
∑

1≤i,j≤n
i 6=j

(E[Xi]× E[Xj ]− E[Xi]× E[j])

(by the above claim, since Xi and Xj are independent if i 6= j)

=

n
∑

i=1

(

E[X2
i ]− E[Xi]

2
)

+
∑

1≤i,j≤n
i 6=j

0

=

n
∑

i=1

(

E[X2
i ]− E[Xi]

2
)

=
n
∑

i=1

var(Xi).

That is,

var(X1 +X2 + · · · +Xn) = var(X1) + var(X2) + · · ·+ var(Xn),

as claimed.
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Chebyshev’s Inequality and Cantelli’s Inequality

The lecture notes also include results that can be applied, to used the expected values of

variances of random variables to establish tail bounds, namely, Chebyshev’s Inequality and

Cantelli’s Inequality (stated as Theorem 7 and Theorem 8, respectively). These will be con-

sidered in the lecture presentation and the tutorial exercise for this topic.

Proof of the Chernoff Bound

Theorem 9 (The Chernoff Bound). Let Ω be a finite sample space with probability distribution

Pr : Ω → R. Suppose that X1,X2, . . . ,Xn are mutually independent random variables such

that Xi : Ω → {0, 1} for 1 ≤ i ≤ n, and suppose that P(Xi = 1) = p for every integer i such

that 1 ≤ i ≤ n, for a real number p such that 0 ≤ p ≤ 1. Let X = X1 +X2 + · · ·+Xn. Then,

for every real number θ such that 0 ≤ θ ≤ 1,

P(X ≥ (1 + θ)pn) ≤ e−
θ2

3
pn.

Sketch of Proof. Let t be any positive real number. Then, since X is a random variable, etX is

a non-negative random variable — and

P(X ≥ (1 + θ)pn) = P(etX ≥ et(1+θ)pn).

Now, since X = X1 +X2 + · · ·+Xn,

E[etX ] = E[etx1 × etx2 × · · · × etxn ],

and, since the random variables x1, x2, . . . , xn are mutually independent, so are the random

variable etx1 , etx2 , . . . , etxn . This can be used to show, by induction on n, that

E[etX ] = E[etx1 × etx2 × · · · × etxn ] =

n
∏

i=1

E[etxi ]. (2)

Since the random variable xi only assumes values 0 and 1, with probabilities p and 1 − p

respectively, the random variable etxi only assumes values e0 = 1 and et, with probabilities p

and 1− p respectively, so that

E[etxi ] = p · 1 + (1− p) · et = 1− p(et − 1). (3)

It now follows by the equations at lines (2) and (3) that

E[etX ] =
n
∏

i=1

E[etxi ] = (1 + p(et − 1))n.
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Now recall, by Markov’s Inequality, that

P(etX ≥ k · E[etX ]) ≤ 1
k

for any positive real number k. In particular, this is true when k = et(1+θ)pn · E[etX ]−1, so that

P(etX ≥ et(1+θ)pn) ≤
E[etX ]

et(1+θ)pn

=
(1 + p(et − 1))n

et(1+θ)pn
.

A consideration of the Taylor expansion of the function f(x) = ex can be used to establish

that 1 + x ≤ ex for every positive real number x, so that (1 + x)n ≤ exn for every positive real

number x as well. Since t is a positive real number et − 1 > 0 as well, so that

(1 + p(et − 1))n ≤
(

ep(e
t−1)

)n

= epn(e
t−1)

and it now follows that

P(X ≥ (1 + θ)pn) = P(etX ≥ et(1+θ)pn) ≤
epn(e

t−1)

et(1+θ)pn
.

Now let t = ln(1 + θ) — which is a positive real number, since θ > 0. Then

P(X ≥ (1 + θ)pn) ≤
epn(e

t−1)

et(1+θ)pn

=
eθpn

e(1+θ)pn ln(1+θ)

= epn(θ−(1+θ) ln(1+θ))

= epnf(θ)

for the function f such that f(x) = x− (1+ x) ln(1+ x) for every positive real number x. Now

notice that f ′(x) = − ln(1 + x), f ′′(x) = −(1 + x)−1, f (3)(x) = (1 + x)−2, and f (ℓ)(x) =
(−1)ℓ+1 · (ℓ − 2)!(̇1 + x)ℓ−1 for every integer ℓ such that ℓ ≥ 4. A consideration of a Taylor

expansion for f (at 0) confirms that if θ is a real number such that 0 ≤ θ ≤ 1 then

f(θ) =
∑

i≥2

(−1)i−1 · 1
i·(i−1)θ

i

≤ −1
2θ

2 + 1
6θ

3

≤ −1
2θ

2 + 1
6θ

2

= −1
3θ

2.

Thus epnf(θ) ≤ e−
θ2

3
pn, and it now follows that

P(X ≥ (1 + θ)pn) ≤ e−
θ2

3
pn,

as claimed.
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