Lecture #21: Tail Bounds Lecture Presentation

Application: Hash Tables with Chaining

Once again, consider a *hash table with chaining*. As before, suppose that the hash table stores a set

$$
S = \{k_1, k_2, \ldots, k_n\}
$$

of n values from some "universe" \mathcal{U} " — where n is a positive integer. Suppose, as well, that the table size is m, so that the hash table is constructed, and accessed, using some *hash function*

$$
h: \mathcal{U} \to \{0, 1, 2, \ldots, m-1\}.
$$

For $0 \le i \le m-1$, let S_i be the set of integers j such that $h(k_i) = i$:

 $S_i = \{j \in \mathbb{Z} \mid 1 \leq j \leq n \text{ and } h(k_j) = i\}.$

Suppose that we now model the problem using the same kind of *sample space* as in recent lectures, and that we make the same *assumptions* about hash functions, as well.

What This Means:

As in the previous lecture, let us consider the size of the set S_0 , that is, the number of integers j such that $1\leq j\leq n$ and the j^{th} key, $k_j,$ is "hashed" to location $0.$

As noted in the previous lecture presentation this can be modelled by a random variable X_0 : $\Omega \to \mathbb{R}$, where

$$
X_0 = X_{0,1} + X_{0,2} + \cdots + X_{0,n}
$$

such that, for $1\leq i\leq n,$ $X_{0,i}$ is an *indicator random variable* whose value is 1 if the $i^{\sf th}$ key, $k_i,$ is hashed to location'0, and whose value is 1 otherwise.

• Using the probability distribution $P : \Omega \to \mathbb{R}$ that we have been using so far,

$$
\mathsf{P}(X_{0,i}=1)=\tfrac{1}{m}
$$

for every integer i such that $1 \leq i \leq n$.

What is **E**[X]*?*

What is $var(X_i)$ *for* $1 \leq i \leq n$?

What Else Can Be Established About $X_{0,1}, X_{0,2}, \ldots, X_{0,n}$?

What Can Be Established about **var**(X)*?*

Let α be a real number such that $\alpha > 0$. Suppose we wish that bound the probability that

$$
X \ge (\alpha + 1)\mathsf{E}[X],
$$

that is, the probability that the value of the random variable X is greater than or equal to $\frac{(\alpha+1)n}{m}.$

Using Markov's Inequality:

Using Chebyshev's Inequality:

Using Cantelli's Inequality:

Using the Chernoff Bound:

Chebyshev's Inequality

Theorem (Chebyshev's Inequality): Let Ω *be a finite sample space with probability distribution* $P: \Omega \to \mathbb{R}$, let X be a random variable, and let $a \in \mathbb{R}$ such that $a > 0$. Then

$$
\mathsf{P}(|X| \ge a) \le \frac{\mathsf{E}[X^2]}{a^2}.
$$

Proof: