
Lecture #21: Tail Bounds

What about Countably Infinite Sample Spaces?

Introduction

Once again, suppose that Ω is a sample space, P : Ω → R is a probability distribution for Ω,

and X : Ω → R is a random variable.

The definition of the expected value of the random variable X, with respect to P, included an

additional condition, namely, that the sum

∑

σ∈Ω

P(σ)× |X(σ)|

is finite — that is, “less than +∞”. While the condition is not stated over, and over again,

it is “implicitly” required every time the expected value of a random variable is introduced —

because the “expected value” of the random variable is only defined when the condition is

satisfied.

• For example, Claim #2 (Linearity of Random Variables) concerns random variables

X1,X2, . . . ,Xn : Ω → R,

as well as random variables

Y = X1 +X2 + · · ·+Xn

and

Z = aX1 + b

for real numbers a and b. It is “implicitly” required that

∑

σ∈Ω

P (σ)× |Xi(σ)|
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is finite, for every integer i such that 1 ≤ i ≤ n — because the expected values E[Xi],
for 1 ≤ i ≤ n, are not guaranteed to be defined, otherwise. If this condition is satisfied

then it turns out that both

∑

σ∈Ω

P(σ)× |Y (σ)| and
∑

σ∈Ω

P(σ) × |Z(σ)|

are finite as well — and the relationships in the claim can be established, even when Ω
is countably infinite.

This condition is trivially satisfied if the sample space, Ω is finite — then (since X and P are

required to be well-defined total functions from Ω to R) the sum is a sum of finitely many terms,

and its value must certainly be fixed and finite, as well.

Lecture #21 introduced several results that could be used to establish “tail bounds”, that is,

bounds on the probabilities that the values of random variables exceeded given thresholds.

Most of these results were only stated for the case that the sample space, Ω, is finite.

We we are often dealing with experiments with finite sample spaces, there also interesting

experiments — including one in which we repeatedly toss a fair coin until we see “Heads” —

where the sample space is countably infinite, instead. It would be helpful to have results that

can be applied in these situations too.

The goal of this document is to explain why additional technical conditions must be checked

when we are working with countably infinite sample spaces, and to identify situations where

these conditions are trivially satisfied (so that we can apply results in much the same was as

we can for finite sample spaces).

Why Infinite Series Complicate Things

Consider the alternating harmonic series
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One way to approach this is to define (for ∈ N)

Sn =

n∑

i=1

(−1)i+1

i

and to think of the above series as

lim
n→+∞

Sn.
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This limit exists and is equal to ln 2.

We could also reorder the terms in the series. Suppose that, every time we included the next

positive term, we included the next two negative terms after it:
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This series includes exactly the same set of terms as the previous one did. It simply lists them

in different order. If you set Tn to be the sum of the first n terms in the above series, then you

can check that

lim
n→+∞

Tn

also exists — but this limit is 1
2 ln 2 instead of ln 2.

Indeed, it can be proved that there is a way to reorder the terms in this infinite series, so

that you are still including the same set of terms, and the limit of the series is whatever real

number you might want it to be. Proofs that are straightforward and correct, for finite sample

spaces and finite seres, can fall apart for infinite sample spaces, and infinite series, because

you are changing the order of the terms in your series as you go from one line of your argument

to the next.

Now, if we take the sum of the absolute values of the terms in our original series, then the

series that we get is the harmonic series
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— which is divergent : That is, if we set

Hn =
n∑

i=1

1
n

then it can be shown that lim
n→+∞

Hn = +∞ — this series does not converge to any real number,

at all.

An infinite series ∑

µ∈Ω

αµ

is said to be absolutely convergent if the series

∑

µ∈Ω

|αµ|

(including the absolute values of the terms in the original series) converges to a real number

(instead of to +∞).
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So, Things are Not So Bad

It turns out that if a series is absolutely convergent then the original series also converges to

a real number and, furthermore, this value is well-defined — you cannot change this value by

changing the order in which the terms in the series are included. The proofs that were correct

for finite series are — generally — correct for absolutely convergent series too.

So, that pesky technical condition in the definition of “expected value” is just saying that we are

only going to define and use these values when it makes (mathematical) sense to do so — that

is, when the values we want to work with really are well-defined, and well-behaved. Various

results that were stated in the preparatory reading for Lecture #20 still hold for countably

infinite sample spaces when expected values of random variables are defined.

• In particular, if Ω is a countably infinite sample space with probability distribution P : Ω →
R, and X1,X2, . . . ,Xn : Ω → R are random variables such that each of the series

∑

µ∈Ω

Xi(µ)× P(µ)

is absolutely convergent — so that the expected value of Xi is defined — for 1 ≤ i ≤ n,

then the series ∑

µ∈Ω

(X1(µ) +X2(µ) + · · ·+Xn(µ))× P(µ)

is also absolutely convergent — so that the expected value of the random variable X1 +
X2 + · · ·+Xn is also defined — and

E[X1 +X2 + · · ·+Xn] = E[X1] + E[X2] + · · ·+ E[Xn]

— as claimed for the case that Ω is finite, in part (a) of Claim #2 from Lecture #20.

• If Ω is a countably infinite sample space with probability distribution P : Ω → R X : Ω →
R is a random variable such that the series

∑

µ∈Ω

X(µ) × P(µ)

is absolutely convergent — so that the expected value of the random variable X is de-

fined — and a, b ∈ R, then the series
∑

µ∈Ω

(a ·X(µ) + b) · P(µ)

is also absolutely convergent — so that the expected value of the random variable a·X+b

is defined — and

E[a ·X + b] = a · E[X] + b

— as is claimed for the case that Ω is finite, in part (b) of Claim #2 from Lecture #20.
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Claims and their proofs, in Lecture #21, can be extended as follows.

• If Ω is a countably infinite sample space with a probability distribution P : Ω → R,

X : Ω → V is a random variable (for some set V ⊆ R, g : R → R is a total function and

the series ∑

µ∈Ω

g(X(µ)) × P(µ)

is absolutely convergent — so that
∑

µ∈Ω

|g(X(µ) × P(µ)|

is finite — then

E[g(X)] =
∑

w∈g(V )

w × P(g(X) = w)

— as is claimed in Lemma #1 from Lecture #21 for the case that Ω is finite — and (since it

only involves reordering terms in the series) the same proof can be used without change.

• Suppose that Ω is a countably infinite sample space with probability distribution P : Ω →
R. Let X : Ω → V be a random variable (so that V ⊆ R) and let a, b ∈ V .

(i) If P(X = b) = 1 then ∑

µ∈Ω

|X(µ)| = |b|,

so that the series ∑

µ∈Ω

X(µ)

is absolutely convergent, and the expected value of X is defined. Furthermore,

E[X] = b

as claimed in Lemma #2(i), for the case that the sample space Ω is finite.

(ii) If P(a < X ≤ b) = 1 then
∑

µ∈Ω

|X(µ)| ≤ max(|a|, |b|),

so that the series ∑

µ∈Ω

X(µ)

is absolutely convergent, and the expected value of X is defined. Furthermore,

a ≤ E[X] ≤ b,

which is almost what is claimed in Lemma #2(ii), for the case that Ω is finite.
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(iii) Suppose that g, h : R → R are total functions and that the series

∑

µ∈Ω

|g(X(µ))| and
∑

µ∈Ω

|h(X(µ))|

are both finite — so that the series
∑

µ∈Ω

g(X(µ)) and
∑

µ∈Ω

h(X(µ))

are both absolutely convergent, and the expected values of g(X) and h(X) are

defined. Then the series ∑

µ∈Ω

(g + h)(X(µ))

is also absolutely convergent, so that the expected value of (g + h)(X) is defined,

and

E[(g + h)(X)] = E[g(X) + h(X)] = E[g(X)] + E[h(X)],

as is claimed in Lemma #2(iii), for the case that Ω is finite.

• The Basic Inequality — given as Theorem #3 in Lecture #20 — also holds when Ω is a

countably infinite sample space, instead of finite, the other conditions given in the result

all hold, and the series ∑

µ∈Ω

h(X(µ)) × P(µ)

is absolutely convergent — so that the expected value of the random variable h(X) is

defined.

• Markov’s Inequality also holds for a random variable X, over a countably infinite sample

space Ω with probability distribution P : Ω → R, provided that the series

∑

µ∈Ω

|X(µ)| × P(µ)

is finite — in which case this series is also absolutely convergent, and the expected

values of the random variables X and |X| are both defined.

• Let Ω be a countably infinite sample space with probability distribution P : Ω → R, let

X : Ω → R be a random variable such that the series
∑

µ∈Ω

|X(µ) × P(µ)|

and ∑

µ∈Ω

X2(µ)× P(µ)
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are both finite — so that the expected values of the random variables X and X2 are both

defined. Then

var(X) =
∑

µ∈Ω

(X(µ)− E[X])2 × P(µ)

is also finite, and

var(X) = E[X2]− E[X]2

— as claimed, for the case that Ω is finite, in Theorem #5 in Lecture #21.

• Chebyshev’s Inequality includes the expected value of a non-negative random variable,

namely, the square X2 — and the inequality will hold (when the sample space is count-

ably infinite) as long as E[X2] is finite,

• Cantelli’s Inequality involves the variance of a random variable X — and this will also

be an infinite series if the sample space, Ω, is countably infinite. Once again, though,

this is an infinite series whose terms are all greater than or equal to zero: The series will

be “well behaved”, with a well defined value, as long as the series has a finite value. If

it does the Cantelli’s Inequality can be applied just as it can when the sample space is

finite.

• The conditions that must be satisfied, in order for the Chernoff bound to be applicable

at all, guarantee that that any infinite series that must be worked with are absolutely

convergent. Thus no additional conditions must be checked to state (and use) a version

of this bound for countably infinite sample spaces.

With all that noted — you should be careful when working with values that are defined as

summations, when the sample space is countably infinite: You might actually be working with

an infinite series and, as noted above, its “value” will generally not be well-defined, at all, unless

the series is absolutely convergent.
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