Lecture #20: Random Variables and Expectation Questions for Review

Random Variables

Let Ω be a sample space.

- 1. What is a *random variable* over Ω ?
- 2. What are random variables used to model (or "represent")?
- 3. What is an *integer-valued random variable* (over Ω)?
- 4. What is an *indicator random variable* (over Ω)?

Expectation

Once again, let Ω be a sample space — and let $P : \Omega \to \mathbb{R}$ be a probability distribution for Ω .

- 5. Let X be a random variable over Ω . What is the *expected value* of X with respect to the probability distribution P?
- 6. Let X be a random variable over Ω , and let $B \subseteq \Omega$ be an event such that P(B) > 0. What is the *conditional expectation* of X given B?
- 7. Let X be a random variable over Ω , and let $B \subseteq \Omega$ be an event such that P(B) > 0 and $P(B^C) > 0$. How can the expected value of X be computed from the conditional expectations E[X | B] and $E[X | B^C]$, and the probability P(B) of B?

8. Let X be a random variable over Ω and, for a positive integer n, let X_1, X_2, \ldots, X_n be random variables over Ω such that

$$X = X_1 + X_2 + \dots + X_n.$$

- (a) How are the expected values of X, and of X_1, X_2, \ldots, X_n , related?
- (b) For real numbers c and b, what is the relationship between the expected values of the random variables cX + b and X?
- (c) Is generally true that $E[X \times Y] = E[X] \times E[Y]$, for random variables X and Y over Ω ?
- 9. If X and Y are random variables over Ω, what does it mean for these random variables to be *independent random variables* (with respect to a probability distribution P)?
- 10. If X_1, X_2, \ldots, X_n are random variables over Ω , for a positive integer *n*, what does it mean for these to be *pairwise independent random variables* (with respect to a probability distribution *P*)?
- 11. If X_1, X_2, \ldots, X_n are random variables over Ω , for a positive integer n, what does it mean for these to be *mutually independent random variables* (with respect to a probability distribution P)?