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Learning Goals

Learning Goals:

• Introduce random variable and their expected values as

a way to consider numerical information that can be

considered as part of an experiment (and may be the main

reason why you want to consider the experiment, at all).
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Random Variables

When we consider an experiment there is often a numerical

value that we wish to count or bound.

Examples:

• When tossing a sequence of coins, how many coins are

tossed before a head is tossed for the first time?

• When tossing a sequence of n coins, how many times is

a “head” tossed?

• When shuffling a deck of cards, what is the highest rank of

the first five cards (where an Ace has rank 1, a Jack has

rank 11, a Queen has rank 12, and King has rank 13, and

the rank of any numbered card is its number)?

• When inserting a sequence of keys into a hash table, what

is the length of the linked list of values at position 0 of the

table?
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Random Variables

Definition: Let Ω be a sample space. A random variable over

Ω is a (total) function X : Ω → R.

• We will often shorten this phrase from “random variable

over Ω” to “random variable” when the context makes it

clear what sample space, Ω, is being considered.

• Any probability distribution P : Ω → R is an example of a

“random variable over Ω”.
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Random Variables

We will often be interested in random variable whose ranges

are particular subsets V of R — so that these functions can

also be viewed as functions X : Ω → V (as well as functions

X : Ω → R).

• For example, an integer-valued random variable is a

random variable X : Ω → R such that X (σ) ∈ Z for all

σ ∈ Ω — so that, in effect, X : Ω → Z.

• The (even more special) case that X : Ω → N will often be

of interest too.
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Random Variables

So will be the (even more special) case that X (σ) ∈ {0,1} for

all σ ∈ Ω, so that X : Ω → {0,1}.

• This kind of random variable is often called an indicator

random variable because it “indicates” an event, namely

the event

{σ ∈ Ω | X (σ) = 1} ⊆ Ω.
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Random Variables

Example: Consider the experiment of tossing a sequence of

three coins — so that

Ω = {(H,H,H), (H,H,T), (H,T,H), (H,T,T),

(T,H,H), (T,H,T), (T,T,H), (T,T,T)}.

The random variable “number of heads tossed” is the function

X : Ω → N such that

• X ((H,H,H)) = 3.

• X ((H,H,T)) = X ((H,T,H)) = X ((T,H,H)) = 2.

• X ((H,T,T)) = X ((T,H,T)) = X ((T,T,H)) = 1.

• X ((T,T,T)) = 0.
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Random Variables

Once again, let Ω be a sample space and let X : Ω → R.

• We will write “X = r ” as the name of the event

{σ ∈ Ω | X (σ) = r} ⊆ Ω.

• We will write “X ≥ r ” as the name of the event

{σ ∈ Ω | X (σ) ≥ r} ⊆ Ω.

• “X ≤ r ”, “X > r ”, X < r ”, and X 6= r ” can be used as the

names for (corresponding) events in the same way.
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Random Variables

Continuing the previous example,

“X = 3” = {(H,H,H)},

“X = 2” = {(H,H,T), (H,T,H), (T,H,H)},

and

“X ≥ 2” = {H,H,H), (H,H,T), (H,T,H), (T,H,H)}.
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Expectation

Let Ω be a sample space with probability distribution P : Ω → R,

and let X : Ω → R be a random variable over Ω.

Suppose that
∑

σ∈Ω

P(σ) × |X (σ)|

is finite — that is, “ less than +∞”.1

Then the expected value of X, with respect to probability

distribution P, is the value

E[X ] =
∑

σ∈Ω

P(σ)× X (σ).

1This is a “technical restriction” that you will not need to worry about

whenever Ω is a finite set.
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Expectation

• The phrase “with respect to probability distribution P” will

be dropped when it is clear, from context, which probability

distribution is being used.

• This value has other names in the literature including
• the mean of X ,
• the expectation of X , and
• the first moment of X .



Random Variables Expectation Linearity of Expectation Independent Random Variables

Expectation

Continuing this example — with the uniform distribution

P : Ω → R —

E[X ] =
∑

σ∈Ω

P(σ) × X (σ)

= P((H,H,H))× X ((H,H,H)) + P((H,H,T))× X ((H,H,T))

+ P((H,T,H))× X ((H,T,H)) + P((H,T,T))× X ((H,T,T))

+ P((T,H,H))× X ((T,H,H)) + P((T,H,T))× X ((T,H,T))

+ P((T,T,H))× X ((T,T,H)) + P((T,T,T))× X ((T,T,T))

=
1

8
× 3 +

1

8
× 2 +

1

8
× 2 +

1

8
× 1 +

1

8
× 2 +

1

8
× 1

+
1

8
× 1 +

1

8
× 0

=
1

8
× 12 =

3

2
.
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Conditional Expectation

Recall, from the lecture on “Conditional Probability”, that if Ω is

a sample space, P : Ω → R is a probability distribution, and

B ⊆ Ω is an event such that P(B) > 0, then a conditional

probability distribution PB : Ω → R can be defined by setting

PB(σ) =

{

P(σ)
P(B) if σ ∈ B,

0 if σ /∈ B

for every outcome σ ∈ Ω.

Definition: If X is a random variable then the conditional

expectation of X given B is the expected value of X with the

respect to the conditional probability PB:

E[X |B] =
∑

σ∈Ω

PB(σ)× X (σ).
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Conditional Expectation

Continuing this example, let us consider the event

B = “First toss is H”,

that is, the event

B = {(H,H,H), (H,H,T), (H,T,H), (H,T,T)}.

Now

PB((H,H,H)) =
P((H,H,H))

P(B)
=

1/8

1/2
=

1

4

and

PB((H,H,T)) =
P((H,H,T))

P(B)
=

1/8

1/2
=

1

4

since P((H,H,H)) = P((H,H,T)) = 1
8 .
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Conditional Expectation

Indeed,

PB((H,T,H)) = PB((H,T,T)) =
1

4

as well.

On the other hand,

PB((T,H,H)) = PB((T,H,T))

= PB((T,T,H)) = PB((T,T,T)) = 0,

since none of (T,H,H), (T,H,T), (T,T,H) or (T,T,T) belong to B.



Random Variables Expectation Linearity of Expectation Independent Random Variables

Conditional Expectation

It now follows that

E[X |B]

= PB((H,H,H))× X ((H,H,H)) + PB((H,H,T))× X ((H,H,T))

+ PB((H,T,H))× X ((H,T,H)) + PB((H,T,T))× X ((H,T,T))

+ PB((T,H,H))× X ((T,H,H)) + PB((T,H,T))× X ((T,H,T))

+ PB(T,T,H))× X ((T,T,H)) + PB((T,T,T))× X ((T,T,T))

=
1

4
× 3 +

1

4
× 2 +

1

4
× 2 +

1

4
× 1 + 0 × 2 + 0 × 1

+ 0 × 1 + 0 × 0

=
1

4
× 8 + 0 = 2.
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Conditional Expectation

Exercise: Prove that Ω is a sample space with probability

distribution P : Ω → R, B ⊆ Ω is an event such that P(B) > 0,

and X is a random variable, then

E[X |B] =
1

P(B)
×
∑

σ∈B

(P(σ)× X (σ)) .
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Conditional Expectation

Recall that — since PB is also a probability distribution for the

sample space Ω whenever B is an event such that P(B) > 0,

properties of probability distributions could be applied to PB, in

order to establish corresponding results for conditional

probabilities.

• Since a conditional expectation is just the expected value

of a random variable, defined using the conditional

probability distribution PB, properties of expectations can

be used to establish corresponding properties of

conditional expectations, in essentially the same way.
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Conditional Expectation

The following result is useful just as the “Law of Total

Probability” (Claim #3 from Lecture #19) is: It describes a way

to compute an expectation by considering cases

(corresponding to whether, or not, an event has occurred).

Recall that if B ⊆ Ω, then

BC = {σ ∈ Ω | σ /∈ B}.

Claim #1: Let Ω be a sample space with probability distribution

P : Ω → R, let B ⊆ Ω be an event such that P(B) > 0 and

P(BC) > 0, and let X be a random variable. Then

E[X ] = E[X |B]× P(B) + E[X |BC ]× P(BC).

Proof: Exercise.
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Linearity of Expectation

Let Ω be a sample space with a probability distribution

P : Ω → R, and let X1,X2, . . . ,Xn : Ω → R be random variables,

for some positive integer n. “X1 + X2 + · · · + Xn” denotes a

random variable such that

(X1 + X2 + · · · + Xn)(σ) = X1(σ) + X2(σ) + · · · + Xn(σ)

for each outcome σ ∈ Ω. Similarly, if X : Ω → R and a,b ∈ R

then “a · X + b” denotes a random variable such that

(aX + b)(σ) = a · X (σ) + b

for every outcome σ ∈ Ω, as well.
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Linearity of Expectation

Claim #2 (Linearity of Expectation): Let Ω be a sample space

with probability distribution P : Ω → R.

(a) If X1,X2, . . . ,Xn : Ω → R are random variables over Ω, for a

positive integer n, then

E[X1 + X2 + · · ·+ Xn] = E[X1] + E[X2] + · · ·+ E[Xn].

(b) If X : Ω → R is a random variable over Ω and a,b ∈ R then

E[a · X + b] = a · E[X ] + b.

Proof: Another exercise.
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Linearity of Expectation

Once again, consider the random variable

X = “Number of Heads Tossed”.

Note that

X = X1 + X2 + X3

where, for 1 ≤ i ≤ 3 and σ = (σ1, σ2, σ3) ∈ Ω,

Xi(σ) = Xi((σ1, σ2, σ3)) =

{

1 if αi = H,

0 if αi = T.
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Linearity of Expectation

Note that

E[X1] =
∑

σ∈Ω

P(σ)× X1(σ)

= P((H,H,H))× X1((H,H,H)) + P((H,H,T))× X1((H,H,T))

+ P((H,T,H))× X1((H,T,H)) + P((H,T,T))× X1(H,T,T))

+ P((T,H,H))× X1((T,H,H)) + P((T,H,T))× X1((T,H,T))

+ P((T,T,H))× X1((T,T,H)) + P((T,T,T))× X1((T,T,T))

=
1

8
× 1 +

1

8
× 1 +

1

8
× 1 +

1

8
× 0 +

1

8
× 0

+
1

8
× 0 +

1

8
× 0

=
4

8
=

1

2
.
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Linearity of Expectation

Exercise: Confirm that

E[X2] = E[X3] =
1

2

as well.

It now follows that

E[X ] = E[X1 + X2 + X3] (since X = X1 + X2 + X3)

= E[X1] + E[X2] + E[X3] (by Linearity of Expectation)

=
1

2
+

1

2
+

1

2
=

3

2

— as previously noted. “Linearity of Expectation” can give a

way to compute the expected value of a complicated random

variable by considering simpler ones, instead.
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Independent Random Variables

It follows by Claim #2 that if X1 and X2 are random variables

over Ω, then E[X + Y ] = E[X ] + E[Y ].

• It might be reasonable to wonder whether

E[X × Y ] = E[X ]× E[Y ]

as well?

• It turns out that this is not generally true.
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Independent Random Variables

Consider, again, the random variable

X1 : Ω → R

— recalling that

X1((H,H,H)) = X1((H,H,T)) =

X1((H,T,H)) = X1((H,T,T)) = 1

and

X1((T,H,H)) = X1((T,H,T)) =

X1((T,T,H)) = X1((T,T,T)) = 0.
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Independent Random Variables

Let Y = X = X1 — noting, in this case, that

X × Y (σ) =

{

1 if X1(σ) = 1,

0 if X1(σ) = 0.

This can be used to establish that

E[X × Y ] = E[X1] =
1

2
,

while

E[X ]× E[Y ] =
1

2
×

1

2
=

1

4

so that

E[X × Y ] 6= E[X ]× E[Y ]

in this case.
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Independent Random Variables

Once again, suppose that Ω is a sample space with probability

distribution P : Ω → R. Consider random variables X : Ω → VX

and Y : Ω → VY , where VX ,VY ⊆ R. Recall that, for a ∈ VX

and b ∈ VY ,

“X = a” = {σ ∈ Ω | X (σ) = a}

and

“Y = b” = {τ ∈ Ω | Y (τ) = b},

so that

“X = a ∧ Y = b” = {µ ∈ Ω | X (µ) = a and Y (µ) = b}.
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Independent Random Variables

Definition: The above random variables X and Y are

independent if

P(X = a ∧ Y = b) = P(X = a)× P(Y = b)

for all values a ∈ VX and b ∈ VY .

In other words, X and Y are “independent” if all events

corresponding to choices of values for X and for Y ,

respectively, are independent.
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Independent Random Variables

Continuing the above example, consider the random variables

X1 : Ω → R and X2 : Ω → R

as previously described — so that

X1(σ) ∈ {0,1} and X2(σ) ∈ {0,1}

for all σ ∈ Ω.

Exercise: Confirm that

P(X1 = 0) = P(X1 = 1) = P(X2 = 0) = P(X2) =
1

2
.
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Independent Random Variables

Confirm, as well, that

P(X1 = i ∧ X2 = j) =
1

4
=

1

2
×

1

2

for all i , j ∈ {0,1}.

Thus

P(X1 = i ∧ P(X )2 = j) = P(Xi = j)× P(X2 = j)

for all i , j ∈ {0,1} — so that the random variables X1 and X2 are

independent.
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Pairwise Independent Random Variables

Once again, let Ω be a sample space with probability

distribution P : Ω → R. Let k be a positive integer and let

X1 : Ω → V1,X2 : Ω → V2, . . . ,Xk : Ω → Vk

be random variables over Ω (so that V1,V2, . . . ,Vk ⊆ R).

Definition: The random variables X1,X2, . . . ,Xk are pairwise

independent if the random variables Xi and Xj are

independent, for every pair of numbers i and j such that

1 ≤ i < j ≤ k .



Random Variables Expectation Linearity of Expectation Independent Random Variables

Mutually Independent Random Variables

Finally, let Ω be a sample space with probability distribution

P : Ω → R. Let k be a positive integer and let

X1 : Ω → V1,X2 : Ω → V2, . . . ,Xk : Ω → Vk

be random variables over Ω (so that V1,V2, . . . ,Vk ⊆ R).

Definition: The random variables X1,X2, . . . ,Xk are mutually

independent if the following condition is satisfied: For every

subset S ⊆ {1,2, . . . , k} and for all combinations of ai ∈ Vi , for

i ∈ S,

P

(

∧

i∈S

(Xi = ai)

)

=
∏

i∈S

P(Xi = ai).

With a bit of work one can show that this is equivalent to the

definition of the independence of a pair of random variables, X1

and X2, when k = 2.
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Mutually Independent Random Variables

• Returning to the example of tossing three coins once again

— with quite a bit more work, it can be shown that the

random variables X1, X2 and X3, included in the example,

are mutually independent.

• If k ≥ 3 and X1,X2, . . . ,Xk are random variables, as above,

and X1,X2, . . . ,Xk are mutually independent, then

X1,X2, . . . ,Xk must be pairwise independent as well.

• However, it is possible that X1,X2, . . . ,Xk are pairwise

independent, but not mutually independent.
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