Lecture #19: Conditional Probability and Independence Questions for Review

Conditional Probability

- 1. Let Ω be a sample space, let P be a probability distribution for Ω , and let $A, B \subseteq \Gamma$ be events such that P(B) > 0. What is the *conditional probability*, P(A | B), of A given B?
- 2. Let Ω , P and B be as above. What is the *conditional probability space* (defined from P) conditional on event B?
- 3. State the Law of Total Probability. What might it be used for?
- 4. State the *Extended Partition Rule*. How is it related to the "Law of Total Probability"? What might it be used for?
- 5. State Baye's Theorem. How might this be used?

Independence

- 6. Consider a sample space Ω , probability distribution $\mathsf{P} : \Omega \to \mathbb{R}$, and a pair of events $A, B \subseteq \Omega$ such that $\mathsf{P}(B) > 0$.
 - (a) What does it mean for A to be *attracted* to B (under P)?
 - (b) What does it mean for A to be **repelled** by B (under P)?
 - (c) What does it mean for A to be *indifferent* to B (under P)?
- 7. What does it mean for a pair of events, $A \subseteq \Omega$ and $B \subseteq \Omega$, to be *independent*?
- 8. Consider a sample space Ω and events $A \subseteq \Omega$ and $B_1, B_2, \ldots, B_k \subseteq \Omega$, for an integer $k \geq 1$. Let $\mathsf{P} : \Omega \to \mathbb{R}$ be a probability distribution for the sample space Ω .
 - (a) What does it mean for the events B_1, B_2, \ldots, B_k to be *pairwise disjoint*?

Now suppose that B_1, B_2, \ldots, B_k are pairwise disjoint and, furthermore, that

$$B_1 \cup B_2 \cup \cdots \cup B_k = \Omega.$$

- (b) Describe how the probability, P(A), of the event A can be calculated from the conditional probabilities P(A | B_i), for 1 ≤ i ≤ k.
- (c) What can be concluded about P(A), and the relationship between A and B_i , if

$$\mathsf{P}(A | B_1) = \mathsf{P}(A | B_2) = \dots = \mathsf{P}(A | B_k) = q$$

for some real number q?

- 9. Once again, let Ω be a sample space, let $\mathsf{P} : \Omega \to \mathbb{R}$ be a probability distribution for the sample space Ω , and let $A_1, A_2, \ldots, A_k \subseteq \Omega$ be events, for an integer k such that $k \ge 2$.
 - (a) What does it mean for the events A_1, A_2, \ldots, A_k to be *mutually independent*?
 - (b) What does it mean for the events A_1, A_2, \ldots, A_k to be *pairwise independent*?
 - (c) How are "mutual independence" and "pairwise independence" related?