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Conditional Probability Independence

Learning Goals

Learning Goals:

• Review concepts concerning relationships between events,

in an experiment, including

• conditional probabilities, and
• independence of sets of events.

Additional useful results about these may also be

introduced.



Conditional Probability Independence

Conditional Probability

Let Ω be a sample space and let A,B ⊆ Ω be events such that

P(B) > 0. The conditional probability of A given B, denoted

P(A |B), is

P(A |B) =
P(A ∩ B)

P(B)
.

P(A |B) is not defined if P(B) = 0.



Conditional Probability Independence

Conditional Probability

Example: Consider the “Balls and Bins” example from the

previous lecture, which involved two parameters:

• m — the number of balls

• n — the number of bins into which the balls must be

placed.

Each outcome was represented as a sequence

(α1, α2, . . . , αm)

where αi is an integer such that 1 ≤ αi ≤ n for every integer i

such that 1 ≤ m: This represents the situation where the i th ball

is placed in the αth
i bin, for all such i .



Conditional Probability Independence

Conditional Probability

The sample space is the set

Ω = {(α1, α2, . . . , αm) |αi ∈ Z and 1 ≤ αi ≤ n

for every integer i such that 1 ≤ i ≤ m},

so that |Ω| = nm.

• It follows that if P : Ω → R is the uniform probability

distribution for this sample space, then

P(~α) = n−m = 1
nm

for every m-tuple ~α = (α1, α2, . . . , αm) ∈ Ω.



Conditional Probability Independence

Conditional Probability

Suppose that m ≥ 2. Let us consider the following events.

• A: α1 = 1, that is, the first ball is placed in the first bin.

• B: α1 = α2, that is, the first and second balls are placed in

the same bin.

Then A is the subset

{(1, α2, α3, . . . , αm) | αi ∈ Z and 1 ≤ i ≤ n

for every integer i such that 2 ≤ i ≤ m}

of Ω — so that |A| = nm−1 and

P(A) = |A|
|Ω| =

nm−1

nm = 1
n
.



Conditional Probability Independence

Conditional Probability

B is the subset

{(α1, α2, . . . , αm) | αi ∈ Z and 1 ≤ i ≤ n for every

integer i such that 1 ≤ i ≤ m, and such that α1 = α2}

of Ω — so that |B| = nm−1 and

P(B) = |B|
|Ω| =

nm−1

nm = 1
n
.
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Conditional Probability

B ∩ A is the subset

{(1,1, α3, α4, . . . , αm) | αi ∈ Z and 1 ≤ i ≤ n

for every integer i such that 3 ≤ i ≤ m}

of Ω — so that |B ∩ A| = nm−2 and

P(B ∩ A) = |B∩A|
|Ω| = nm−2

nm = 1
n2 .



Conditional Probability Independence

Conditional Probability

Now

P(B |A) =
P(B ∩ A)

P(B)
(by the definition of P(B |A))

=
P(B ∩ A)

P(A)

= 1/n2

1/n

= 1
n
.



Conditional Probability Independence

Conditional Probability Distribution

Once again, let Ω be a sample space and let B ⊆ Ω be event an

event such that P(B) > 0. Consider the function PB : Ω → R

such that, for every outcome x ∈ Ω,

PB(x) = P({x} |B)

=
P({x} ∩ B)

P(B)

=

{
P(x)
P(B) if x ∈ B,

0 if x /∈ B.



Conditional Probability Independence

Conditional Probability Distribution

Once again, let Ω be a sample space and let B ⊆ Γ be event an

event such that P(B) > 0. Consider the function PB : Ω → R

such that, for every outcome x ∈ Ω,

PB(x) = P({x} |B)

=
P({x} ∩ B)

P(B)

=

{
P(x)
P(B) if x ∈ B,

0 if x /∈ B.



Conditional Probability Independence

Conditional Probability Distribution

Continuing our “Balls and Bins” example once again, recall that

B is the event

{(α1, α2, . . . , αm) | αi ∈ Z and 1 ≤ i ≤ n for every

integer i such that 1 ≤ i ≤ m, and such that α1 = α2}

of Ω. It would follow that, for an outcome

~α = (α1, α2, . . . , αm) ∈ Ω,

that if ~α ∈ B then

PB(~α) =
P(~α)
P(B) =

n−m

n−1 = n−(m−1).



Conditional Probability Independence

Conditional Probability Distribution

Thus if ~α ∈ Ω then

PB(~α) =

{
n−(m−1) if ~α ∈ B,

0 otherwise.



Conditional Probability Independence

Conditional Probability Distribution

Claim #1: If Ω, B, and functions P,PB : Ω → R are as above —

so that P(B) > 0 — then PB is a probability distribution.

Proof: Since PB is a well-defined (total) function from Ω to R, it

is necessary and sufficient to show that it satisfies the

properties given in the definition of a “probability distribution”:

(a) 0 ≤ PB(x) ≤ 1 for every outcome x ∈ Ω, and

(b)
∑

x∈Ω

PB(x) = 1.
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Conditional Probability Distribution

In order to establish property (a), let x ∈ Ω. Then either x ∈ B

or x /∈ B.

• If x /∈ B then PB(x) = 0, by the definition of PB, so that

0 ≤ PB(x) ≤ 1 in this case.

• On the other hand, if x ∈ B then

P(B) =
∑

y∈B

P(y) (by the definition of P(B))

= P(x) +
∑

y∈B\{x}

P(y) (since x ∈ B)

≥ P(x) +
∑

y∈B\{x}

0

= P(x).
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Conditional Probability Distribution

• Since 0 ≤ P(x) ≤ P(B), and P(B) > 0,

0 ≤ P(x)
P(B) ≤

P(B)
P(B) = 1,

that is, 0 ≤ PB(x) ≤ 1 in this case too.

• Thus property (a) is satisfied in all possible cases.



Conditional Probability Independence

Conditional Probability Distribution

In order to establish property (b) note that, since B ⊆ Ω,

∑

x∈Ω

PB(x) =
∑

x∈B

PB(x) +
∑

x∈Ω\B

PB(x) (splitting the sum)

=
∑

x∈B

P(x)
P(B) +

∑

x∈Ω\B

0

=
∑

x∈B

P(x)
P(B)

=
1

P(B)
·
∑

x∈B

P(x)

=
1

P(B)
· P(B) (by the definition of P(B))

= 1.



Conditional Probability Independence

Conditional Probability Distribution

Since properties (a) and (b) are both satisfied, it follows that the

function

PB : Ω → R

is a probability distribution, as claimed.



Conditional Probability Independence

Conditional Probability Distribution

Claim #2: Suppose that Ω, B, and the functions P,PB : Ω → R

are as given above. If C ⊆ Ω then

PB(C) = P(C |B).

Proof: Recall that

C \ B = {x ∈ Ω | x ∈ C and x /∈ B}

so that

(C ∩ B) ∪ (C \ B) = C

and

(C ∩ B) ∩ (C \ B) = ∅.
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Conditional Probability Distribution

Now

PB(C) =
∑

x∈C

PB(x)

=
∑

x∈B∩C

PB(x) +
∑

x∈C\B

PB(x) (splitting the sum)

=
∑

x∈B∩C

PB(x) +
∑

x∈C\B

0 (since PB(x) = 0 if x /∈ B)

=
∑

x∈B∩C

PB(x)

=
∑

x∈B∩C

P(x)
P(B) (by the definition of PB(x))

=
1

P(B)
·
∑

x∈B∩C

P(x).



Conditional Probability Independence

Conditional Probability Distribution

Continuing this derivation, we now have

PB(C) =
1

P(B)
·
∑

x∈B∩C

P(x)

=
1

P(B)
· P(B ∩ C)

= P(B∩C)
P(B)

= P(C |B)

as required to establish the claim.



Conditional Probability Independence

Conditional Probability Distribution

From now on, we will call the above probability distribution, PB ,

the conditional probability distribution (defined from P)

conditional on event B.

• We will leave out “(defined from P)” when it is clear, from

context, what the probability distribution, P, would be.



Conditional Probability Independence

Conditional Probability Distribution

A variety of properties of conditional probabilities can be

established using the fact that the conditional probability

distribution is, indeed, a “probability distribution” itself.

Example: Recall, from Theorem #1 in the previous lecture, that

if A ⊆ Ω, for a sample space Ω, then the probability of the

complement, A, of the event A, is

P(A) = 1 − P(A).

Now let B ⊆ Ω be an event such that P(B) > 0.



Conditional Probability Independence

Conditional Probability Distribution

Applying Theorem #1 from the previous lecture — with the

conditional probability distribution PB in place of the probability

distribution P — we have that

PB(A) = 1 − PB(A).

Now applying Claim #2 above — with each of the events A

and A used in place of C — we see that

PB(A) = P(A |B) and PB(A) = P(A |B).

It now follows, by the above, that

P(A |B) = 1 − P(A |B). (1)



Conditional Probability Independence

Conditional Probability Distribution

Another Example: Recall, by Theorem #2 from the previous

lecture, that if P : Ω → R is a probability distribution for a

sample space Ω, and A,B ⊆ Ω, then

P(A ∪ B) = P(A) + P(B)− P(A ∩ B).

• This property is often called the Inclusion-Exclusion

Principle.



Conditional Probability Independence

Conditional Probability Distribution

Now let C ⊆ Ω be an event such that P(C) > 0, so that the

function PC : Ω → R is a probability distribution for Ω, as well.

• Applying the Inclusion-Exclusion Principle, with this

probability distribution, we may now conclude that

PC(A ∪ B) = PC(A) + PC(B)− PC(A ∩ B)

— that is, (by Claim #2)

P(A ∪ B |C) = P(A |C) + P(B |C)− P(A ∩ B |C). (2)



Conditional Probability Independence

The Law of Total Probability

Claim #3 (Law of Total Probability): Let Ω be a sample space

and let P : Ω → R be a probability distribution. Then, for any

events A and B,

P(A) = P(A |B) · P(B) + P(A |B) · P(B).



Conditional Probability Independence

The Law of Total Probability

• P(A |B) has not been defined when P(B) = 0 — but let us

consider

P(A |B) · P(B)

to be 0 for any event A, whenever B is an event such that

P(B) = 0.

• The proof of Claim #3 is left as an exercise. When

completing this, it might be helpful to remember that

(A ∩ B) ∪ (A ∩ B) = A

and

(A ∩ B) ∩ (A ∩ B) = ∅

for all events A,B ⊆ Ω.
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Extended Partition Rule

The following is a generalization of the law of total probability.

Claim #4 (Extended Partition Rule): Let Ω be a sample

space, let P : Ω → R be a probability distribution, let k be a

positive integer, and let A and B1,B2, . . . ,Bk be events

satisfying the following properties.

(a) B1,B2, . . . ,Bk are pairwise disjoint. That is, Bi ∩ Bj = ∅ for

all integers i and j such that 1 ≤ i , j ≤ k and i 6= j .

(b) A ⊆ B1 ∪ B2 ∪ · · · ∪ Bk .

Then

P(A) = P(A |B1) · P(B1)+

P(A |B2) · P(B2) + · · ·+ P(A |Bk ) · P(Bk ).



Conditional Probability Independence

Extended Partition Rule

• Suppose that A and B1,B2, . . . ,Bk are as in the statement

of the claim. Note that if k ≥ 3 and

B̃1 = B2 ∪ B3 ∪ · · · ∪ Bk

then B1 ∩ B̃1 = ∅, since Bi ∩ Bj = ∅ for every integer j such

that 2 ≤ k — and

B1 ∪ B̃1 = B1 ∪ B2 ∪ · · · ∪ Bk

— so that A ∪ B1 ∪ B̃1.

• Exercise: Using the above, prove Claim #4 by induction

on k .
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Baye’s Theorem

Claim #5 (Baye’s Theorem): Let Ω be a sample space, let

P : Ω → R, and let A and B be events such that P(A) > 0 and

P(B) > 0. Then

P(A |B) =
P(B |A) · P(A)

P(B)
.

Proof: Recall that (by definition)

P(B |A) =
P(B ∩ A)

P(A)

and

P(A |B) =
P(A ∩ B)

P(B)
=

P(B ∩ A)

P(B)
.
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Baye’s Theorem

Thus

P(B |A) · P(A)

P(B)
=

(P(B ∩ A)/P(A)) · P(A)

P(B)

=
P(B ∩ A)

P(B)

= P(A |B),

as claimed.



Conditional Probability Independence

Independence

Consider a sample space Ω, and probability distribution

P : Ω → R, and a pair of events A,B ⊆ Ω such that P(B) > 0.

• A is said to be attracted to B (under P) if P(A |B) > P(A).

• A is said to be repelled by B (under P) if P(A |B) < P(A).

• A is said to be indifferent to B (under P) if P(A |B) = P(A).

We will leave out the phrase “under P” if the probability

distribution being used is clear.

These technical terms are useful, but somewhat obscure.1 The

related term, defined next, is more widely used.

1I discovered them, for the first time, when looking at one of the

introductions to probability theory that I discovered when preparing these

lecture notes.



Conditional Probability Independence

Independence

Events A and B are said to be independent if

P(A ∩ B) = P(A)× P(B).

• Note that if P(B) > 0 then A and B are independent if and

only if A is indifferent to B.



Conditional Probability Independence

Independence

Example: Recall the example of “Shuffling a Deck of Playing

Cards” from Lecture #18. In this case

• There are 52 ways to choose the first card (in the new

order),

• Since the first card is no longer available, there are

51 ways to choose the second card,

• Since the first two cards are no longer available, there are

50 ways to choose the third card,

and so on, so that there are

52 × 51 × 50 × · · · × 2 × 1 = 52!

ways to shuffle the card in this deck — and the sample space,

Ω, for this experiment has size 52! = 52 × 51! .
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Independence

Consider the uniform distribution — so that we will use a

probability distribution P : Ω → R such that

P(x) = 1
52!

for every outcome x ∈ Ω. Consider, as well, the following

events.

• A: The first card in the new order is a heart.

• B: The second card in the new order is a heart.
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Independence

Consider the outcomes in Σ that belong to the event A.

• Since only 13 cards in the deck are hearts, there are now

13 ways to choose the first card.

• Once again, since the first card is no longer available,

there are 51 ways to choose the second card. There are,

then, 50 ways to choose the third card, and so on.

Thus the number of outcomes in event A is

|A| = 13 × 51 × 50 × 49 × . . . 2 × 1 = 13 × 51!

so that (since P is the uniform distribution)

P(A) =
|A|

|Ω|
=

13 × 51!

52 × 51!
=

13

52
=

1

4
.
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Independence

Consider the outcomes in Σ that belong to the event B.

• Exercise: Prove that P(B) = 1
4 , as well.

• You may be able to find more than one way to show this.

• If time permits, this will be discussed during the lecture

presentation.
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Independence

Consider the outcomes in Σ that belong to the event A∩B — so

that the first two cards in the selected ordering are both hearts.

• Since 13 cards in the deck are hearts, there are 13 ways to

choose the first card.

• Since 12 cards that are hearts are left over, after the first

card has been chosen, there are 12 ways to choose the

second card.

• There are 50 cards left after the first two cards have been

chosen, so there are 50 ways to choose the third card.

• There are then 49 ways to choose the fourth card, 48 ways

to choose the fifth card, and so on.
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Independence

• Thus the number of outcomes in the event A ∩ B is

|A ∩ B|

= 13 × 12 × 50 × 49 × · · · × 2 × 1 = 13 × 12 × 50!.

• Since P is the uniform probability distribution,

P(A ∩ B) =
|A ∩ B|

|Ω|
=

13 × 12 × 50!

52 × 51 × 50!
=

1

17
.
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Independence

• Thus

P(A |B) =
P(A ∩ B)

P(B)
=

1/17

1/4
=

4

17
.

• Since

P(A) =
1

4
=

4

16
>

4

17
= P(A |B),

it follows that event A is repelled by event B.
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Independence

Another Exercise: Consider the following events as well.

• C: The second card in the new order is a spade.

• D: The second card in the new order is an ace

(remembering that “ace” is not the name of a card suit like

“heart” or “spade” is).

(a) Show that event A is attracted to event C.

(b) Show that event A is indifferent to event D. That is, show

that events A and D are independent.
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Fixing Partial Random Choices

Informal Description

Suppose that a sample space Ω and probability distribution

P : Ω → R is being used to model an experiment where results

have several components — so that “partial results” can be

considered.

• Suppose that one part of the result can be set — in every

possible way — without the (conditional) probability of a

given event A being changed.

• Then this part of the result can just be “arbitrarily set” in

any way that you want to.The conditional probability of A,

for this setting, will be the same as the (unconditional)

probability of A, no matter which setting you picked.
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Fixing Partial Random Choices

Formal Description

Claim #6: Let Ω be a sample space with probability distribution

P : Ω → R. Let A be an event, and let B1,B2, . . . ,Bk be pairwise

disjoint events for a positive integer k (so that Bi ∩ Bj = ∅ for all

integers i and j such that 1 ≤ i , j ≤ k and i 6= k) such that

B1 ∪ B2 ∪ · · · ∪ Bk = Ω.

Finally, suppose that

P(A |Bi) = P(A |B2) = · · · = P(A |Bk ) = q

for some real number q.

Then P(A) = q as well — so that the events A and Bi are

independent for every integer i such that 1 ≤ i ≤ k .
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Fixing Partial Random Choices

Proof: It is given that B1,B2, . . . ,Bk are pairwise disjoint and,

since B1 ∪ B2 ∪ · · · ∪ Bk = Ω, A ⊆ B1 ∪ B2 ∪ · · · ∪ Bk . It now

follows by Claim #4, above, that

P(A) = P(A |B1) · P(B1) + P(A |B2) · P(B2)+

· · ·+ P(A |Bk ) · P(Bk )

= q · P(B1) + q · P(B2) + · · ·+ q · P(Bk )

= q · (P(B1) + P(B2) + · · · + P(Bk ))

since P(A |Bi) = q for every integer i such that 1 ≤ i ≤ k .
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Fixing Partial Random Choices

Now, since B1,B2, . . . ,Bk are pairwise disjoint, and since

B1 ∪ B2 ∪ · · · ∪ Bk = Ω, it can be established by induction on k

that

P(B1) + P(B2) + · · ·+ P(Bk ) = P(B1 ∪ B2 ∪ · · · ∪ Bk )

= P(Ω) = 1

so that

P(A) = q · (P(B1) + P(B2) + · · · + P(Bk ))

= q · 1 = q

as claimed. Thus P(A) = P(A |Bi) = q as well, and the

events A and Bi are independent, for every integer i such that

1 ≤ i ≤ k .
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Fixing Partial Random Choices

Example: Suppose that we are tossing a fair coin, three times,

so that the sample space is

Ω = {(H,H,H), (H,H,T), (H,T,H), (H,T,T),

(T,H,H), (T,H,T), (T,T,H), (T,T,T)}.

Since we are tossing a fair coin the uniform probability

distribution P : Ω → R is being used. That is, P(σ) = 1
|Ω| =

1
8 for

every outcome σ ∈ Ω.
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Fixing Partial Random Choices
Consider the following events.

• B1 is the event that the first toss is “H” and the second toss

is “H”, so that

B1 = {(H,H,H), (H,H,T)}.

• B2 is the event that the first toss is “H” and the second toss

is “T”, so that

B2 = {(H,T,H), (H,T,T)}.

• B3 is the event that the first toss is “T” and the second toss

is “H”, so that

B3 = {(T,H,H), (T,H,T)}.

• B4 is the event that the first toss is “T” and the second toss

is “T”, so that

B4 = {(T,T,H), (T,T,T)}.
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Fixing Partial Random Choices

Note that the events B1, B2, B3 and B4 are pairwise disjoint and

that

B1 ∪ B2 ∪ B3 ∪ B4 = Ω

so that this set of events satisfy the conditions given (for

“B1,B2, . . . ,Bk ”) in Claim #6.

Now consider the following event as well.

• A is the even that an even number of heads (“H”) were

tossed.
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Fixing Partial Random Choices

Let us confirm that this event satisfies the conditions (for “A”) in

Claim #6.

• A ∩ B1 = {(H,H,T)}, so that

P(A |B1) =
P(A ∩ B1)

P(B1)
=

|A ∩ B1|

|B1|
=

1

2
.

• A ∩ B2 = {(H,T,H)}, so that

P(A |B2) =
P(A ∩ B2)

P(B2)
=

|A ∩ B2|

|B2|
=

1

2
.
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Fixing Partial Random Choices

• A ∩ B3 = {(T,H,H)}, so that

P(A |B3) =
P(A ∩ B3)

P(B3)
=

|A ∩ B3|

|B3|
=

1

2
.

• A ∩ B4 = {(T,T,T)}, so that

P(A |B4) =
P(A ∩ B4)

P(B4)
=

|A ∩ B4|

|B4|
=

1

2
.

Setting q = 1
2 we see that P(A |Bi) = q for every integer i such

that 1 ≤ i ≤ 4. It follows, by the above claim, that P(A) = q = 1
2

as well, and that the events A and Bi are independent, for every

integer i such that 1 ≤ i ≤ 4.
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Mutual Independence

Once again, let Ω be a sample space with probability

distribution P : Ω → R. Let A1,A2, . . . ,Ak ⊆ Ω be events, for

some integer k ≥ 2.

Definition: The events A1,A2, . . . ,Ak are mutually

independent if

P

(
⋂

i∈S

Ai

)
=
∏

i∈S

P(Ai) (3)

for every S of {1,2, . . . , k}.

Note: The condition at line (3) is guaranteed to hold whenever

|S| ≤ 1, so this condition only needs to be considered when

|S| ≥ 2.
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Mutual Independence

For example, if k = 3 and events A1,A2,A3 are mutually

independent, then each of the following equations is satisfied.

• P(A1 ∩ A2) = P(A1)× P(A2).

• P(A1 ∩ A3) = P(A1)× P(A3).

• P(A2 ∩ A3) = P(A2)× P(A3).

• P(A1 ∩ A2 ∩ A3) = P(A1)× P(A2)× P(A3).
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Mutual Independence

For example, if k = 4 and events A1,A2,A3,A4 are mutually

independent, then each of the equations, shown on this and the

next slide, is satisfied.

• P(A1 ∩ A2) = P(A1)× P(A2).

• P(A1 ∩ A3) = P(A1)× P(A3).

• P(A1 ∩ A4) = P(A1)× P(A4).

• P(A2 ∩ A3) = P(A2)× P(A3).

• P(A2 ∩ A4) = P(A2)× P(A4).

• P(A3 ∩ A4) = P(A3)× P(A4).
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Mutual Independence

• P(A1 ∩ A2 ∩ A3) = P(A1)× P(A2)× P(A3).

• P(A1 ∩ A2 ∩ A4) = P(A1)× P(A2)× P(A4).

• P(A1 ∩ A3 ∩ A4) = P(A1)× P(A3)× P(A4).

• P(A2 ∩ A3 ∩ A4) = P(A2)× P(A3)× P(A4).

• P(A1 ∩ A2 ∩ A3 ∩ A4) = P(A1)× P(A2)× P(A3)× P(A4).
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Mutual Independence

Example: Once again, consider the experiment of tossing a

fair coin three times, so that the sample space is

Ω = {(H,H,H), (H,H,T), (H,T,H), (H,T,T),

(T,H,H), (T,H,T), (T,T,H), (T,T,T)}

and the probability distribution P : Ω → R is the uniform

probability distribution — so that P(σ) = 1
|Ω| =

1
8

for each

outcome σ ∈ Ω.

Consider the following events.

• A1: First coin toss is “H”.

• A2: Second coin toss is “H”.

• A3: Third coin toss is “H”.



Conditional Probability Independence

Mutual Independence

Now

A1 = {(H,H,H), (H,H,T), (H,T,H), (H,T,T)},

so that

P(A1) =
|A1|

|Ω|
=

4

8
=

1

2
.

Exercise: Confirm that |A2| = |A3| = 4, so that

P(A2) = P(A3) =
1

2

as well.

In order to confirm that the events A1, A2 and A3 are mutually

independent we must establish properties (a), (b), (c) and (d),

below.



Conditional Probability Independence

Mutual Independence

(a) P(A1 ∩ A2) = P(A1)× P(A2).

To see that this is true, note that A1 ∩ A2 is the event “both

the first and second coin tosses are H”, so that

A1 ∩ A2 = {(H,H,H), (H,H,T)}

and

P(A1 ∩ A2) =
|A1 ∩ A + 2|

|Ω|
=

2

8
=

1

4
,

while

P(A1)× P(A2) =
1

2
×

1

2
=

1

4

as well. Thus P(A1 ∩ A2) = P(A1)× P(A2), as required.



Conditional Probability Independence

Mutual Independence

(b) P(A1 ∩ A3) = P(A1)× P(A3).

(c) P(A2 ∩ A3) = P(A2)× P(A3).

Exercise: Modify the proof of property (a) to obtain similar

proofs of properties (b) and (c).



Conditional Probability Independence

Mutual Independence

(d) P(A1 ∩ A2 ∩ A3) = P(A1)× P(A2)× P(A3).

To see that this is true, not that A1 ∩ A2 ∩ A3 is the event

“all three coin tosses are H”, so that

A1 ∩ A2 ∩ A3 = {(H,H,H)}

and

P(A1 ∩ A2∩) =
|A1 ∩ A2 ∩ A3|

|Ω|
=

1

8
,

while

P(A1)× P(A2)× P(A3) =
1

2
×

1

2
×

1

2
=

1

8

as well. Thus P(A1 ∩ A2 ∩ A3) = P(A1)× P(A2)× P(A3) as

required.



Conditional Probability Independence

Mutual Independence

Since all relevant conditions are satisfied, it follows that the

events A1, A2 and A3 are mutually independent.



Conditional Probability Independence

Pairwise Independence

Once again, let Ω be a sample space with probability

distribution P : Ω → R. Let A1,A2, . . . ,Ak ⊆ Ω be events, for

some integer k ≥ 2.

Definition: The events A1,A2, . . . ,Ak are pairwise

independent if

P(Ai ∩ Aj) = P(Ai)× P(Aj) (4)

for every pair of integers i and j such that 1 ≤ i , j ≤ k and i 6= j .

Note: Since

Ai ∩ Aj = Aj ∩ Ai and P(Ai)× P(Aj) = P(Aj)× P(Ai)

whenever 1 ≤ i , j ≤ k and i 6= j , it is sufficient to check the

condition at line (4), for integers i and j such that 1 ≤ i < j ≤ k ,

when pairwise independence is being checked.
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Pairwise Independence

For example, if k = 3 and events A1,A2,A3 are pairwise

independent, then each of the following equations is satisfied.

• P(A1 ∩ A2) = P(A1)× P(A2).

• P(A1 ∩ A3) = P(A1)× P(A3).

• P(A2 ∩ A3) = P(A2)× P(A3).



Conditional Probability Independence

Pairwise Independence

For example, if k = 4 and events A1,A2,A3,A4 are pairwise

independent, then each of the following equations is satisfied.

• P(A1 ∩ A2) = P(A1)× P(A2).

• P(A1 ∩ A3) = P(A1)× P(A3).

• P(A1 ∩ A4) = P(A1)× P(A4).

• P(A2 ∩ A3) = P(A2)× P(A3).

• P(A2 ∩ A4) = P(A2)× P(A4).

• P(A3 ∩ A4) = P(A3)× P(A4).



Conditional Probability Independence

Pairwise Independence

Example: Consider the experiment of tossing a fair coin two

times — so that the sample space is

Ω = {(H,H), (H,T), (T,H), (T,T)}

and P : ω → R is the uniform probability distribution, so that

P(σ) = 1
|Ω| =

1
4

for every outcome σ ∈ Ω.
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Pairwise Independence

Consider the following events:

• A1 is the event “the first toss is H”, so that

A1 = {(H,H), (H,T)}.

• A2 is the event “the second toss is H”, so that

A2 = {(H,H), (T,H)}.

• A2 is the event “the tosses are the same”, so that

A3 = {(H,H), (T,T)}.
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Pairwise Independence

• Then

P(Ai) =
|Ai |

|Ω|
=

2

4
=

1

2

for each integer i such that 1 ≤ i ≤ 3.

• In order to confirm that the events A1, A2 and A3 are

pairwise independent, it is necessary confirm that

properties (a), (b) and (c), as given on the next slides, are

all satisfied.



Conditional Probability Independence

Pairwise Independence

(a) P(A1 ∩ A2) = P(A1)× P(A2).

To see that this is true, note that

A1 ∩ A2 = {(H,H)}

so that

P(A1 ∩ A2) =
|A1 ∩ A2|

|Ω|
=

1

4
,

while

P(A1)× P(A2) =
1

2
×

1

2
=

1

4
.

Thus P(A1 ∩ A2) = P(A1)× P(A2), as required.
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Pairwise Independence

Exercise: Modify the above argument to show that each of the

following properties is satisfied, as well.

(b) P(A1 ∩ A3) = P(A1)× P(A3).

(c) P(A2 ∩ A3) = P(A2)× P(A3).

Since these properties are all satisfied, the above events A1, A2

and A3 are all pairwise independent.
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Mutual Independence and Pairwise Independence

Note: In order for these events to be mutually independent

as well, it must also be true that

P(A1 ∩ A2 ∩ A3) = P(A1)× P(A2)× P(A3).

Now

A1 ∩ A2 ∩ A3 = {(H,H)},

so that

P(A1 ∩ A2 ∩ A3) =
|A1 ∩ A2 ∩ A3|

|Ω|
=

1

4
,

while

P(A1)× P(A2)× P(A3) =
1

2
×

1

2
×

1

2
=

1

8
.

Thus P(A1 ∩ A2 ∩ A3) 6= P(A1)× P(A2)× P(A3), and the events

A1, A2 and A3 are not mutually independent.
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Mutual Independence and Pairwise Independence

• A comparison of the definitions of these terms is sufficient

to confirm that, for every integer k ≥ 1 and all events

A1,A2, . . . ,Ak ⊆ Ω,

“if A1,A2, . . . ,Ak are mutually independent then

A1,A2, . . . ,Ak are pairwise independent”.

• The above example shows, though, that pairwise

independence does not always imply mutual

independence.



Conditional Probability Independence

Mutual Independence and Pairwise Independence

• Some references say that “A1,A2, . . .Ak are independent”

when these events are mutually independent, as defined

above.

• The word “independent” will not be used in this way, in this

course, because “pairwise independence” is also a useful

property — which is not the same as “mutual

independence”, as shown above.
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