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Experiments Probability Distributions Combinations

Learning Goal

Learning Goal:

• Review material about probability theory that was, ideally,

introduced CPSC 251 (or a first course in Probability and

Statistics that you completed instead).

The current lecture will review probability distributions

— but these might were not necessarily presented as

formally in the prerequisite course, and terminology and

notation might be slightly different.

• Examples might be different — because applications to

computer science may be introduced — and there is

probably a small amount of new material about probability

theory at the end.
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Experiments — Definition and

Classical Examples

An experiment is a procedure (or process) that yields one of a

given set of possible outcomes. The set of possible outcomes

of the experiment — which we will often name Ω — is called the

sample space.

Classical Examples

• Tossing a coin once

• Tossing a coin, for a fixed number of times

• Rolling a die1 once

• Rolling a die, for a fixed number of times

• Shuffling a deck of playing cards

1This is the singular form of the word dice.
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Tossing a Coin Once

Example: Tossing a Coin Once

• In this case — since we won’t worry about the coin landing

on its edge — there are two outcomes, heads or tails. In

the future we will represent these as H and T respectively.

• The sample space is, then, the set

Ω = {H,T}

with size two.



Experiments Probability Distributions Combinations

Example: Tossing a Coin

for a Fixed Number of Times

Tossing a Coin for a Fixed Number of Times

• Let k be a positive integer, and suppose we toss a coin

k times. Then each outcome can be represented as a

sequence

(α1, α2, . . . , αk )

with length k where αi ∈ {H,T}, and αi is what is obtained

for the i th toss of the coin for each integer i such that

1 ≤ i ≤ k .

• With this representation the sample space is

Ω = {(α1, α2, . . . , αk ) | αi ∈ {H,T} for 1 ≤ i ≤ k}.
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Example: Tossing a Coin

for a Fixed Number of Times

• For example, if k = 3, then

Ω = {(H,H,H), (H,H,T), (H,T,H), (H,T,T),

(T,H,H), (H,T,H), (T,T,H), (T,T,T)},

so that |Ω| = 23 = 8 in this case.

• In general (that is, for arbitrary k), |Ω| = 2k .
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Example: Rolling a Die Once

Rolling a Die Once

• In this case — if we are interested in the side of the die at

the top when it stops, and represent this by the number of

dots on it — there are six outcomes that each belong to

the sample space

Ω = {1,2,3,4,5,6}

— a set with size six.
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Example: Rolling a Die

for a Fixed Number of Times

Rolling a Die for a Fixed Number of Times

• Let k be a positive integer, and suppose we roll a die

k times. Then each outcome can be represented as a

sequence

(α1, α2, . . . , αk )

with length k where αi ∈ {1,2,3,4,5,6}, and αi is the

number of the dots visible at the top of the die when it stops

rolling for the i th time, for each integer i such that 1 ≤ i ≤ k .

• With this representation the sample space is

Ω = {(α1, α2, . . . , αk ) |

αi ∈ {1,2,3,4,5,6} for 1 ≤ i ≤ k}.
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Example: Rolling a Die

for a Fixed Number of Times

• For example, if k = 2 then the sample space is

Ω = {(1,1), (1,2), (1,3), (1,4), (1,5), (1,6),

(2,1), (2,2), (2,3), (2,4), (2,5), (2,6),

(3,1), (3,2), (3,3), (3,4), (3,5), (3,6),

(4,1), (4,2), (4,3), (4,4), (4,5), (4,6),

(5,1), (5,2), (5,3), (5,4), (5,5), (5,6),

(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)}

— a set with size 62 = 36.

• In general (that is, for arbitrary k), |Ω| = 6k .
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Example: Shuffling a Deck of Playing Cards

Example: Shuffling a Deck of Playing Cards

• A standard deck of paying cards contains 52 cards2.
• Each card has one of four suits — either spaces ♠,

clubs ♣, hearts ♥ or diamonds ♦.

• Each card has one of thirteen ranks — either one of the

integers from 1 to 10, of “Jack” J, “Queen” Q or “King” K.3

• Each card can be identified by a sequence of two symbols

— the symbol for its rank, followed by the symbol for its suit.

For example, the “Ace” (card with rank 1) of Spades is
represented as 1♠.

Let C be the set of all playing cards, so that |C| = 52.

2Jokers will not be included here.
3Each card with rank 1 is also called an “Ace” A.
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Example: Shuffling a Deck of Playing Cards
• When “shuffling a deck of playing cards” an outcome is an

ordering, or permutation, of the cards in C. This can be

represented as a sequence

(α1, α2, . . . , α52)

of 52 cards that includes exactly one copy of each of the

cards in C.

• Note that there are 52 possible choices of α1. For each

choice of α1 there are 51 choices of α2. For each pair of

choices of α1 and α2 there are exactly 50 choices of α3,

and so on — so that the sample space Ω — the set of all

permutations of the cards in C — is a set with size

52! =

52
∏

i=1

i .



Experiments Probability Distributions Combinations

Example: Balls and Bins

A More Complicated Example: Balls and Bins

• Let m and n be positive integers. Suppose that you have

m balls and n bins.4 You wish to place each one of the

balls into one of the bins — and you want to keep track of

which balls got placed into each one of the bins.

• Each outcome can be represented as a sequence

(α1, α2, . . . , αm)

where αi is an integer such that 1 ≤ αi ≤ n for every

integer i such that 1 ≤ i ≤ m: This represents the situation

where the i th ball got placed into the αth
i bin, for 1 ≤ i ≤ m.

4In other descriptions of this problem, you have n boxes or n baskets

instead of n bins.
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Example: Balls and Bins

• With this representation, the sample space is

Ω = {(α1, α2, . . . , αm) |

αi ∈ Z and 1 ≤ i ≤ n for 1 ≤ i ≤ m}

— a set with size nm.

• For example, if m = 3 and n = 2 (so there are three balls

and two bins) then

Ω = {(1,1,1), (1,1,2), (1,2,1),1,2,2),

(2,1,1), (2,1,2), (2,2,1), (2,2,2)}.
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Example: Balls and Bins

• On the other hand, if m = 2 and n = 3 (so that there are

two balls and three bins, instead) then

Ω = {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3),

(3,1), (3,2), (3,3)}.

• In a way, this “generalizes” the “Tossing a Coin for a Fixed

Number of Times” example (if “Heads” is represented by 1

instead of H, and “Tails” is represented by 2 instead of T) —

with m used as a parameter instead of k , and with n

replacing 2.

• This also “generalizes” the “Rolling a Die for a Fixed

Number of Times” example — with m used as a parameter

instead of k , and with n replacing 6.
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Example: Trying Until You Succeed

Once again, suppose that you toss a coin — so that the result

of the coin toss could either be “heads” (represented by H) or

“tails” (represented by T). However — this time — you keep

trying until you get “heads” (and then stop, as soon as you do).

• For every positive integer n, one outcome is that you toss

the coin exactly n times before you can stop (so you toss

“tails” n − 1 times and then toss “heads” after that). This

outcome can be represented by the positive integer n.

• There is no guarantee that you ever toss “heads” at all —

you might simply toss “tails” over and over again This

outcome can be represented by “+∞” (“positive infinity”).

• Since there are no other outcomes, the sample space is

Ω = {n ∈ Z | n ≥ 1} ∪ {+∞}.
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Discrete Probability Theory

• In all of the examples considered so far, except for the last

one, the sample space has been finite.

• Experiments with infinite same spaces can sometimes be

useful too. We will say that a set Ω is countable if there is

a total function

f : N → Ω

that is surjective (or “onto”:) For every value x ∈ Ω there

exists a natural number i such that f (i) = x .5

5This is not the only way to define “countable sets” — but the other,

commonly used, definition is equivalent to this one.

Recall, as well, that the set N is not defined the same way in all books or

courses. In this course, N is the set of non-negative integers, 0, 1, 2,3, . . . ,

so that 0 ∈ N.
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Discrete Probability Theory

• Every finite set is countable. The set N of natural numbers

is an example of an infinite set that is countable —

because the above property if we set f : N → N to be the

identity function (so that f (i) = i for all i ∈ N).



Experiments Probability Distributions Combinations

Discrete Probability Theory

• Once again, consider the last example — which included

the same space

Ω = {n ∈ Z | n ≥ 1} ∪ {+∞}.

Consider the function f : N → Ω such that, for every

integer n such that n ≥ 0,

f (n) =

{

n if n ≥ 1,

+∞ if n = 0.

• The function f : N → Ω is surjective, as needed to show

that the sample space, Ω, is countable.



Experiments Probability Distributions Combinations

Discrete Probability Theory

In this course we will almost always consider experiments

where the sample space Ω is countable — so we will be

studying a part of probability theory that is called discrete

probability theory.



Experiments Probability Distributions Combinations

Events

When we consider experiments (modelled by sets of outcomes,

called sample spaces) we are often interested in various

properties or things that can happen.

• Whether or not such a property is satisfied generally

depends on the experiment’s outcome.

• An event is a subset of the experiment’s sample space Ω.

Events are used to model the kinds of “things that are

interested in” that will be studied.

• An elementary event is a set of size one — that is, it is an

event that only includes a single outcome.6

6Sometimes, people say that “elementary event” and “outcome” mean the

same thing. That is not true when an “elementary event” is as defined here,

because a set of size one is a different kind of thing than the single element

of that set.
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Events: An Example

Consider the experiment, “tossing a coin, three times”. As

noted above, the sample space is

Ω = {(H,H,H), (H,H,T), (H,T,H), (H,T,T),

(T,H,H), (T,H,T), (T,T,H), (T,T,T)}.

The event7 “H is tossed more often than T” is the subset

{(H,H,H), (H,H,T), (H,T,H), (T,H,H)}.

7As this example may suggest, we will often describe or name an event

using a property (true/false condition) that the outcomes in the event satisfy.
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Events: Another Example

Consider the experiment of rolling a die, two times. As noted

above, the sample space is

Ω = {(1,1), (1,2), (1,3), (1,4), (1,5), (1,6),

(2,1), (2,2), (2,3), (2,4), (2,5), (2,6),

(3,1), (3,2), (3,3), (2,4), (3,5), (3,6),

(4,1), (4,2), (4,3), (4,4), (4,5), (4,6),

(5,1), (5,2), (5,3), (5,4), (5,5), (5,6),

(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)}

The event “6 is rolled, at least once” is the subset

{(1,6), (2,6), (3,6), (4,6), (5,6),

(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)}.
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Probability Distributions

Consider an experiment with sample space Ω. A probability

distribution is a (total) function

P : Ω → R

such that 0 ≤ P(x) ≤ 1 for every outcome x ∈ Ω, and such that

∑

x∈Ω

P(x) = 1.
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Probabilities of Events

For any set Ω, let P(Ω) denote the set of all subsets of Ω.

• Example: If Ω = {1,2,3} then

P(Ω) = {∅, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}

where ∅ = {} is the empty set — so that

|P(Ω)| = 8 = 23 = 2|Ω|.

• |P(Ω)| = 2|Ω| for every finite set Ω.

• Thus, if Ω is a sample space for an experiment, then P(Ω)
is the set of all events (for this experiment).
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Probabilities of Events

A probability distribution P (on an experiment with a countable

sample space) is “extended” to get a function

P : P(Ω) → R

by setting

P(A) =
∑

x∈A

P(x)

for every event A ⊆ Ω (that is, for all A ∈ P(Ω)).
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Uniform Distributions

If Ω is a finite set then the uniform probability distribution

(for Ω) defines the probability of every outcome to be the same:

This is the function P : Ω → R such that

P(x) =
1

|Ω|

for every outcome x ∈ Ω.

Exercise: Prove that this function is a probability distribution

(for an experiment with same space Ω).
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Uniform Distributions

Suppose that A ⊆ Ω is an event. Then, if P is the uniform

distribution for Ω, then

P(A) =
∑

x∈A

P(x)

=
∑

x∈A

1
|Ω|

= 1
|Ω|

∑

x∈A

1

= 1
|Ω| · |A|

=
|A|

|Ω|
.
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Uniform Distributions

• Example: Consider, again, the experiment “tossing a coin,

three times”. The corresponding sample space is a finite

set, Ω, such that |Ω| = 23 = 8.

• As noted above, the event “H is tossed more often than T”,

is the subset

A = {(H,H,H), (H,H,T), (H,T,H), (T,H,H)}.

• It follows that — assuming the uniform probability

distribution — the probability that H is tossed more often

than T is
|A|

|Ω|
=

4

8
=

1

2
.
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Nonuniform Distributions

• Note: Some descriptions of probability theory (including

introductory videos that you can find online) suggest that

“uniform probability distributions” are the only ones that

exist, or, at least, are the only ones of interest.

• This is not true! Sometimes it is important to consider the

probability of various events when outcomes (included in

the sample space) are not equally likely.
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Nonuniform Distributions

Example: Tossing a biased coin, for a fixed number of times.

• In particular suppose, once again, that we toss a coin three

times, so that

Ω = {(H,H,H), (H,H,T), (H, (T,H), (H,T,T),

(T,H,H), (T,H,T), (T,T,H), (T,T,T)}.

• Suppose that tossing heads is more likely than tossing tails

— so that we are now using a different probability

distribution P : Ω → R.
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Nonuniform Distributions

• Suppose, in particular, that

• P((H,H,H)) = 8
27

.

• P((H,H,T)) = P((H,T,H)) = P((T,H,H)) = 4
27

.

• P((H,T,T)) = P((T,H,T)) = P((T,H,H)) = 2
27

.

• P((T,T,T)) = 1
27

.

• Note that P is a total function from Ω to R and that

0 ≤ P(x) ≤ 1 for every outcome x ∈ Ω.

• Exercise: Confirm that
∑

x∈Ω

P(x) = 1.

• Since it is certainly not the “uniform probability distribution”,

it follows that P is an example of a nonuniform

probability distribution for this experiment.
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Nonuniform Distributions
• Once again consider the event “H is tossed more often

than T”, that is, the event

A = {(H,H,H), (H,H,T), (H,T,H), (T,H,H)}.

• Under this nonuniform probability distribution the

probability that H is tossed more often than T is

P(A) =
∑

x∈A

P(x)

= P((H,H,H)) + P((H,H,T)) + P((H,T,H))

+ P((T,H,H))

=
8

27
+

4

27
+

4

27
+

4

27

=
20

27

— while the probability of this event under the uniform

probability distribution for this experiment was 1
2
.
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An Experiment with an Infinite Sample Space

Once again, consider the experiment in which you toss a coin,

over and over again, until “Heads” is tossed.

• As noted above experiment can be modelled using an

infinite sample space

Ω = {n ∈ Z | n ≥ 1} ∪ {+∞}

where the elements of Ω represent the following situations.

• For each positive integer k , k represents the outcome that
“T” is tossed the first k − 1 times, and then H is tossed after

that.

• +∞ represents the outcome that you never get ‘H” at all.

Instead, “T” is tossed, over and over again.
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An Experiment with an Infinite Sample Space
Consider a function P : Ω → R that is defined as follows.

• P(n) = 2−n for every number n ∈ Z such that n ≥ 1.

• P(+∞) = 0.

Then this is a total function from Ω to R such that 0 ≤ P(x) ≤ 1

for every outcome x ∈ Ω, such that

∑

x∈Ω

P(x) =
∑

n∈Z
n≥1

P(n) + P(+∞)

=
∑

n∈Z
n≥1

2−n + 0 = 1

(using a formula for the sum of a geometric series that you

have, ideally, seen already). Thus the function P is a

probability distribution for this experiment (and infinite

sample space).
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Probability of the Complement of an Event

If Ω is a sample space for an experiment and A ⊆ Ω is an event,

then the complement8 of the event A, A, is the set of

outcomes that are not in A.

A = {x ∈ Ω | x /∈ A}.

8It is also OK if you use AC to represent the complement of A, as we did

for languages. These are both commonly used as the name for this set
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Probability of the Complement of an Event

Theorem #1: Let Ω be a sample space with probability

distribution P : Ω → R, and let A ⊆ Ω. Then the probability of

the complement, A, of the event A is

P(A) = 1 − P(A).

Proof: Let Ω, P and A be as in the statement of the claim. Then,

since P is a probability distribution and A ⊆ Ω,

1 =
∑

x∈Ω

P(x) =
∑

x∈A

P(x) +
∑

x∈Ω
x /∈A

P(x)

=
∑

x∈A

P(x) +
∑

x∈A

P(x)

= P(A) + P(A).

It follows that P(A) = 1 − P(A), as claimed.
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Probability of the Union of Events

Theorem #2: Let Ω be a sample space with probability

distribution P : Ω → R. Then, for any events A,B ⊆ Ω,

P(A ∪ B) = P(A) + P(B)− P(A ∩ B).

Proof: Let Ω, P, A and B be as in the statement of the claim. Let

A \ B = {x ∈ A | x /∈ B}

and let

B \ A = {x ∈ B | x /∈ A}.
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Probability of the Union of Events

Then every event x ∈ A belongs to exactly one of the sets

A ∩ B and A \ B, so that

P(A) =
∑

x∈A

P(x)

(by the definition of the probability of an event)

=
∑

x∈A∩B

P(x) +
∑

x∈A\B

P(x) (splitting the sum)

= P(A ∩ B) + P(A \ B). (1)

Switching the roles of the events A and B, and applying the

argument again, one can also show that

P(B) = P(A ∩ B) + P(B \ A). (2)
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Probability of the Union of Events

Similarly, every event x ∈ A ∪ B belongs to exactly one of the

sets A ∩ B, A \ B, and B \ A. Thus

P(A ∪ B) =
∑

x∈A∪B

P(x)

(by the definition of the probability of an event)

=
∑

x∈A∩B

P(x) +
∑

x∈A\B

P(x) +
∑

x∈B\A

P(x)

(splitting the sum)

= P(A ∩ B) + P(A \ B) + P(B \ A). (3)
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Probability of the Union of Events

Thus

P(A ∪ B) + P(A ∩ B)

= (P(A ∩ B) + P(A \ B) + P(B \ A)) + P(A ∩ B)
(by the equation at line (3))

= (P(A ∩ B) + P(A \ B)) + (P(A ∩ B) + P(B \ A))
(reordering terms)

= P(A) + P(B)
(by the equations at lines (1) and (2)).

It now follows that P(A ∪ B) = P(A) + P(B)− P(A ∩ B), as

claimed.
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The Union Bound

Since P(A ∩ B) ≥ 0 for all events A,B ⊆ Ω, Theorem #2 implies

the following.

Corollary #3: Let Ω be a sample space with probability

distribution P : Ω → R. Then, for any events A,B ⊆ Ω,

P(A ∪ B) ≤ P(A) + P(B).

Notice that, for a positive integer k such that k ≥ 3, If

E1,E2, . . . ,Ek ⊆ Ω then

E1 ∪ E2 ∪ · · · ∪ Ek = Uk−1 ∪ Ek

where

Uk−1 = E1 ∪ E2 ∪ · · · ∪ Ek−1.
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The Union Bound

This observation, and Corollary #3, can be used to establish

the following by induction on k .

Theorem #4 (Union Bound): Let Ω be a sample space with

probability distribution P : Ω → R, let k be a positive integer,

and let E1,E2, . . . ,Ek ⊆ Ω. Then

P(E1 ∪ E2 ∪ · · · ∪ Ek ) ≤
k
∑

i=1

P(Ei).



Experiments Probability Distributions Combinations

Why These Results Matter

• As probability theory is applied to solve problems in

computer science, we will see that it is often useful to be

able to compute — or, at least, find upper bounds for — the

probabilities of various events.

• Sometimes the most easily understood way to do this is to
express the event, that we are interested in, as

• the complement of an event whose probability is easy to
compute, or

• the union of a finite number of events whose probabilities
are easy to compute,

and then apply Theorem #1, Theorem #2, or Theorem #4

to compute (or, in the last case, bound) the probability of

the event we are interested in.
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