CPSC 351 — Tutorial Exercise #13 Many-One Reductions I

This question is intended to give you practice in establishing *many-one reductions* between languages. it is of the difficulty, and length, that would be appropriate for a question on an *assignment* in CPSC 351.

Problem To Be Solved

1. Let $\text{Reject}_{TM}\subseteq TM+I\subseteq \Sigma^{\star}_{TM}$ be the set of encodings of Turing machines

 $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$

and strings $\omega \in \Sigma^*$ such that M *rejects* ω .

Use a *many-one reduction* to prove that the language $Reject_{TM}$ is undecidable.

A *hint* for this problem is available in a separate file — but you should spend at least a little bit of time trying to solve this problem, without looking at it, before you use this hint.