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Goal for Today

• Another proof that a language is undecidable, using a

many-one reduction, will be presented.

• Note: This example is more complicated than anything

that you will be asked to supply on an assignment or test in

this course.
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Decidable Languages

Recall that the following languages have been proved to be

decidable:

• TM ⊆ Σ⋆

TM: Valid encodings of Turing machines

• TM+I ⊆ Σ⋆

TM: Valid encodings of Turing machines M and

strings of symbols over the input alphabet for M.
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Undecidable Languages

The following languages are undecidable:

• ATM ⊆ TM+I ⊆ Σ∗
TM: Encodings of Turing machines M and

strings ω of symbols over the input alphabet for M such

that M accepts ω (see Lecture #13).

• HALTTM ⊆ TM+I ⊆ Σ⋆

TM: Encodings of Turing machines M

and strings ω of symbols over the input alphabet for M such

that M halts when executed on input ω (see Lecture #15).

• AllTM ⊆ TM ⊆ Σ⋆

TM: Encodings of Turing machines that

accept all possible input strings — that is, Turing

machines M with an input alphabet Σ such that L(M) = Σ⋆

(see Lecture #16).
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The Language RegularTM

Let

RegularTM ⊆ TM ⊆ Σ⋆

TM

be the set of encodings of Turing machines M such that L(M) is

a regular language.

• We will prove that RegularTM is undecidable by showing

that ATM �M RegularTM.
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A Reduction from ATM to RegularTM

What Do We Need to Do?

We must describe a total function f : Σ⋆

TM → Σ⋆

TM which

satisfies the following properties:

• For every string µ ∈ Σ⋆

TM,

µ ∈ ATM if and only if f (µ) ∈ RegularTM.

• The function f is computable.
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A Reduction from ATM to RegularTM

Handling a Pesky Case

• Not all strings in Σ⋆

TM encode Turing machines and input

strings for them — only strings in the decidable

language TM+I do.

• If µ ∈ Σ⋆

TM and µ /∈ TM+I then µ /∈ ATM, since ATM ⊆ TM+I.

We want to define f (µ) so that f (µ) /∈ RegularTM in this

case.

• Recall that RegularTM ⊆ TM, where TM is the language of

encodings of Turing machines. If xNo is any string in Σ⋆

TM

such that xNo /∈ TM then xNo /∈ RegularTM — so that setting

f (µ) to be xNo ensures that f (µ) /∈ RegularTM, as is needed

here.

• Since λ /∈ TM we can choose xNo to be λ for this problem.
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A Reduction from ATM to RegularTM

We are left with the problem of defining f (µ) when µ ∈ TM+I.

• In this case µ is the encoding of some Turing machine

M = (Q,Σ, Γ, δ,q0,qaccept,qreject)

and some input string ω ∈ Σ⋆ for the encoded Turing

machine M.

• Let m = |Γ| − 1, so that (using the notation from

Lecture #12) m is a non-negative integer such that

Γ = {σ0, σ1, σ2, . . . , σm}.

• Let m̂ = max(m,4) and let

Γ̂ = {σ0, σ1, σ2, . . . , σm̂}

— so that Γ̂ = Γ if m ≥ 4 and Γ ⊂ Γ̂ if m ≤ 3.
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A Reduction from ATM to RegularTM

• Let

M ′ = (Q,Σ, Γ̂, δ̂,q0,qaccept,qreject)

be the Turing machine with the same set Q of states as M,

the same input alphabet Σ as M, tape alphabet Γ as given

above, and where δ̂ : Q × Γ → Q × Γ× {L,R} is a partial

function such that, for every state q ∈ Q \ {qaccept,qreject}
and for every integer i such that 0 ≤ i ≤ m̂,

δ̂(q, σi) =

{
δ(q, σi ) if 0 ≤ i ≤ m,

(qreject, σi ,R) if m + 1 ≤ i ≤ m̂.

Then M ′ = M whenever m ≥ 4.
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A Reduction from ATM to RegularTM

Note that, if ω ∈ Σ⋆, then M ′ follows the same sequence of

configurations when executed on input ω as M does. This can

be used to complete the following.

Exercise:

1. Prove that M ′ accepts ω if and only if M accepts ω, for

every string ω ∈ Σ⋆.

2. Describe a process that can be used to compute an

encoding of M ′ from the encoding of M.
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A Reduction from ATM to RegularTM

• Now consider the Turing machine M〈M′,ω〉 that is as

described in the previous lecture, for M ′ as above and for a

string ω ∈ Σ⋆: As discussed in the previous lecture, the

language of this Turing machine is

L
(
M〈M′,ω〉

)
=

{
Σ⋆ if M ′ accepts ω,

∅ otherwise.

• In particular, λ ∈ L
(
M〈M′,ω〉

)
if and only if M ′ accepts ω —

and, as noted above, M ′ accepts ω if and only if M

accepts ω.

• Information included in the notes for the previous lecture

can be used to show that an encoding of the Turing

machine M〈M′,ω〉 can be computed from the input string µ
(which encodes M and ω).
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A Reduction from ATM to RegularTM

Finally, let

Σ2 = {a,b}

(so that σ1 = a and σ2 = b, using the encoding for Turing

machines described in Lecture #12) and let

MNonregular = (Q̂,Σ2, Γ̂, δ̃,q0,qaccept,qreject)

be a Turing machine that decides the non-regular language

LNonregular = {anbn | n ∈ Z and n ≥ 0} ⊆ Σ⋆

2

and which satisfies the following additional properties.
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A Reduction from ATM to RegularTM

• |Q̂| = 10.

• For every string ζ ∈ Σ⋆

2 such that ζ /∈ LNonregular, the

execution of MNonregular on input ζ ends with the tape filled

with copies of ⊔, with the tape head resting at the leftmost

cell of the tape.

• A string in Σ⋆

TM, which encodes MNonregular, can be

computed from the unpadded decimal of the integer m that

is described above.
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A Reduction from ATM to RegularTM

Suppose — finally — that f (µ) is an encoding of the following

Turing machine, M̃〈M′,ω〉:

M
Nonregular

M
<M’, ω>

Yes

No

Yes

Yes

No
No

ζ

λ

This Turing machine has input alphabet Σ2 and tape alphabet Γ̂,

and it implements the algorithm on the following slide.
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A Reduction from ATM to RegularTM

On input ζ ∈ Σ⋆

2 {

1. if (ζ ∈ LNonregular) {

2. accept ζ

} else {

3. Execute the Turing machine M〈M′,ω〉 with the

empty string, λ, as input. If this execution ends

then accept if M〈M′,ω〉 accepts λ, and reject if

M〈M′,ω〉 rejects λ.

}

}



The Language RegularTM Reduction from ATM to RegularTM Rice’s Theorem

A Reduction from ATM to RegularTM

Claim #1: Let µ ∈ Σ⋆

TM. If µ ∈ ATM then f (µ) ∈ RegularTM.

Proof: Let µ ∈ Σ⋆

TM such that µ ∈ ATM. Then µ encodes a

Turing machine

M = (Q,Σ, Γ, δ,q0,qaccept,qreject)

and an input string ω ∈ Σ⋆ such that M accepts ω.

• As noted above, the corresponding Turing machine M ′ also

has input alphabet Σ and accepts the string ω.

• The corresponding Turing machine M〈M′,ω〉 (obtained

using the construction given in the previous lecture) is then

a Turing machine with input alphabet Σ such that

L
(
M〈M′,ω〉

)
= Σ⋆ — so that, in particular, this Turing

machine accepts the empty string λ.
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A Reduction from ATM to RegularTM

Now consider an execution of the Turing machine M̃〈M′,ω〉, given

above, on a string ζ ∈ Σ⋆

2. Either ζ ∈ LNonregular or ζ /∈ LNonregular.

• If ζ ∈ LNonregular then M̃〈M′,ω〉 accepts ζ because MNonregular

accepts ζ (so that the test at line 1 of the above algorithm

would pass) — and then the Turing machine M̃〈M′,ω〉 would

immediately accept ζ as well.

• If ζ /∈ LNonregular then M̃〈M′,ω〉 accepts ζ for a different

reason: Now MNonregular rejects ζ (and the test at line 1 in

the algorithm fails), so that M〈M′,ω〉 is executed on the

empty string, λ. As noted above, M〈M′,ω〉 accepts λ — and

M̃〈M′,ω〉 accepts ζ at this point.

Thus the language of M̃〈M′,ω〉 is Σ⋆

2 — which is certainly a

regular language. Since f (µ) is the encoding of the Turing

machine M̃〈M′,ω〉 it follows that f (µ) ∈ RegularTM, as claimed.
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A Reduction from ATM to RegularTM

Claim #2: Let µ ∈ Σ⋆

TM. If µ /∈ ATM then f (µ) /∈ RegularTM.

Proof: Let µ ∈ Σ⋆

TM such that µ /∈ ATM. Then either µ /∈ TM+I, or

µ ∈ TM+I but µ /∈ ATM. These cases are considered separately

below.

Case: µ /∈ TM+I. In this case f (µ) = λ, the empty string. Since

RegularTM ⊆ TM and λ /∈ TM, λ /∈ RegularTM. That is,

f (µ) /∈ RegularTM in this case, as claimed.
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A Reduction from ATM to RegularTM

Case: µ ∈ TM+I but µ /∈ ATM. In this case µ encodes a Turing

machine

M = (Q,Σ, Γ, δ,q0,qaccept,qreject)

and an input string ω ∈ Σ⋆ such that M either rejects or loops

on ω.

• It follows that the corresponding Turing machine M ′ either

rejects or loops on ω as well.

• The corresponding Turing machine M〈M′,ω〉 (obtained

using the construction given in the previous lecture) is then

a Turing machine with input alphabet Σ such that

L
(
M〈M′,ω〉

)
= ∅ — so that, in particular, this Turing

machine either rejects or loops on the empty string λ.
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A Reduction from ATM to RegularTM

Now consider an execution of the Turing machine M̃〈M′,ω〉, given

above, on a string ζ ∈ Σ⋆

2. Either ζ ∈ LNonregular or ζ /∈ LNonregular.

• If ζ ∈ LNonregular then M̃〈M′,ω〉 accepts ζ because MNonregular

accepts ζ (so that the test at line 1 of the above algorithm

would pass) — and then the Turing machine M̃〈M′,ω〉 would

immediately accept ζ as well.

• If ζ /∈ LNonregular then MNonregular rejects ζ (and the test at

line 1 in the algorithm fails), so that M〈M′,ω〉 is executed on

the empty string, λ. As noted above, M〈M′,ω〉 either rejects

or loops on λ — and M̃〈M′,ω〉 either rejects or loops on ζ.

Thus the language of M̃〈M′,ω〉 is LNonregular — which is not a

regular language. Since f (µ) is the encoding of the Turing

machine M̃〈M′,ω〉 it follows that f (µ) /∈ RegularTM in this case as

well, as is needed to complete the proof of this claim.
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A Reduction from ATM to RegularTM

Claim #3: The function f : Σ⋆

TM → Σ⋆

TM is a computable

function.

The proof of this claim is given in a supplemental document for

this lecture. (It is somewhat too long to serve as a good

example of this kind of proof.)
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A Reduction from ATM to RegularTM

• Since f is a well-defined total function from Σ⋆

TM to Σ⋆

TM,

Claims #1, #2 and #3 imply that f is a many-one

reduction from ATM to RegularTM.

• Thus ATM �M RegularTM.

• Since ATM is undecidable, it now follows that RegularTM is

undecidable, as well.
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A Many-One Reduction

The function f has now been shown to have all the properties of

a “many-one reduction” from ATM to RegularTM, so that

ATM �RegularTM
.

Since ATM is undecidable it now follows that RegularTM is

undecidable as well.
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Rice’s Theorem

Rice’s Theorem: Suppose P is a property of Turing machines

that satisfies the following conditions:

• This property is “nontrivial:” There exists at least one

Turing machine MYes that satisfies this property, and at

least one Turing machine “MNo” that does not satisfy this

property.

• This is actually a property of the languages of these

machines: That is, if M1 and M2 are Turing machines such

that L(M1) = L(M2) then M1 satisfies this property if and

only if M2 does.

Then the language LP ⊆ TM including encodings of Turing

machines satisfying property P is undecidable.
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Rice’s Theorem

• A proof of Rice’s Theorem will be included in a

supplemental document for this lecture.

• Rice’s Theorem can be used to identity many more

undecidable languages.

• It can be proved using a modification of the argument that

was used to show that the language RegularTM is

undecidable.

• You will not be allowed to use Rice’s Theorem to prove that

a language is undecidable, on an assignment or test in this

course, unless the instructions clearly state that that you

can.
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