Lecture #17: Proofs of Undecidability — Examples II Lecture Presentation

Goal for This Lecture

Let $\Sigma_{\mathsf{2TM}} = \Sigma_{\mathsf{TM}} \cup \{\#\}$. A *pair* of Turing machines M_1 and M_2 can be encoded as a string $\alpha \# \beta \in \Sigma_{\mathsf{2TM}}^{\star}$ where $\alpha \in \mathsf{TM} \subseteq \Sigma_{\mathsf{TM}}^{\star}$ is the encoding for M_1 and $\beta \in \mathsf{TM} \subseteq \Sigma_{\mathsf{TM}}^{\star}$ is the encoding for M_2 .

1. Let $Pair_{TM} \subseteq \Sigma_{2TM}^{\star}$ be the language of encodings of pairs of Turing machines

$$M_1 = (Q_1, \Sigma, \Gamma_1, \delta_1, q_{0.1}, q_{A.1}, q_{R.1})$$

and

$$M_2 = (Q_2, \Sigma, \Gamma_2, \delta_2, q_{0,2}, q_{A,2}, q_{R,2})$$

with the same input alphabet Σ .

Goal #1: Prove that the language Pair_{TM} is decidable.

2. Now let

$$\mathsf{E}_{\mathsf{TM}} \subseteq \mathsf{Pair}_{\mathsf{TM}} \subseteq \Sigma_{\mathsf{2TM}}^{\star}$$

be the language including encodings of pairs of Turing machines M_1 and M_2 , with the same input alphabet Σ , such that $L(M_1) = L(M_2)$.

Goal #2: Prove that the language E_{TM} is undecidable.

Proving That $Pair_{TM}$ is Decidable

Useful Properties

A "High-Level" Algorithm

Implementation-Level Details

Proving That E _{TM} is Undecidable
Undecidable Languages That We Already Know About
Which Many-One Reduction Will We Try To Establish?
which many-one neduction will we my to Establish:

Useful Aspects of The Problems of Interest — and How To Use Them

Using the Decidability of a Related Language

Thinking about Turing Machines and Input Strings: What Should Our Mapping Be?

Describing This in More Detail (if Needed)

Specifying a Suitable Function f

A First Claim about This Function

A Second Claim about This Function

A Third Claim about This Function

A Useful Related Result, That You Might Establish First

The Third Result and Its Proof

