Instructor: Wayne Eberly

Department of Computer Science University of Calgary

Lecture #16

 All_{TM} and f

Goal for Today

 Another proof that a language is undecidable, using a many-one reduction, will be presented.

Decidable Languages

Recall that the following languages have been proved to be decidable:

- TM $\subseteq \Sigma_{TM}^{\star}$: Valid encodings of Turing machines (whose start state is not a halting state)
- TM+I ⊆ Σ^{*}_{TM}: Valid encodings of Turing machines M and strings of symbols over the input alphabet for M.

Undecidable Languages

The following languages are *undecidable:*

- $A_{TM} \subseteq TM+I \subseteq \Sigma_{TM}^*$: Encodings of Turing machines M and strings ω of symbols over the input alphabet for M such that *M* accepts ω (see Lecture #13)
- HALT_{TM} ⊆ TM+I ⊆ Σ^{*}_{TM}: Encodings of Turing machines M and strings ω of symbols over the input alphabet for M such that *M* halts when executed on input ω (see Lecture #15)

The Language All_{TM}

Let $All_{TM} \subseteq \Sigma_{TM}^*$ be the set of encodings of Turing machines

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$$

(whose start state is not a halting state) such that $L(M) = \Sigma^*$.

- $All_{TM} \subseteq TM$.
- We will prove that All_{TM} is undecidable by proving that $A_{TM} \prec_M All_{TM}$.

What Do We Need to Do?

We must describe a total function $f: \Sigma_{TM}^{\star} \to \Sigma_{TM}^{\star}$ which satisfies the following properties:

- For every string $\mu \in \Sigma_{TM}^{\star}$, $\mu \in A_{TM}$ if and only if $f(\mu) \in All_{TM}$.
- The function f is computable.

Handling a Pesky Case

 All_{TM} and f

- Not all strings in Σ^{*}_{TM} encode Turing machines and input strings for them — only strings in the *decidable* language TM+I do.
- If $\mu \in \Sigma_{\mathsf{TM}}^{\star}$ and $\mu \notin \mathsf{TM}+\mathsf{I}$ then $\mu \notin \mathsf{A}_{\mathsf{TM}}$, since $\mathsf{A}_{\mathsf{TM}} \subseteq \mathsf{TM}+\mathsf{I}$. We want to define $f(\mu)$ so that $f(\mu) \notin \mathsf{All}_{\mathsf{TM}}$ in this case.
- Recall that All_{TM} ⊆ TM, where TM is the language of encodings of Turing machines. If x_{No} is any string in Σ^{*}_{TM} such that x_{No} ∉ TM then x_{No} ∉ All_{TM} — so that setting f(μ) to be x_{No} ensures that f(μ) ∉ All_{TM}, as is needed here.
- Since $\lambda \notin TM$ we can choose x_{No} to be λ for this problem.

We are left with the problem of defining $f(\mu)$ when $\mu \in TM+I$.

• In this case μ is the encoding of some Turing machine

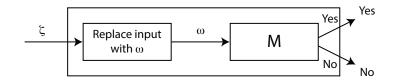
$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$$

and some input string $\omega \in \Sigma^*$ for the encoded Turing machine M.

• Suppose that we set $f(\mu)$ to be the encoding of another Turing machine, $\mathcal{M}_{\langle M, \omega \rangle}$, with the same input alphabet, Σ , as M, the same tape alphabet, Γ , as M, and such that $\mathcal{M}_{\langle M, \omega \rangle}$ has the structure shown on the following slide.

 All_{TM} and f

A Reduction from A_{TM} to All_{TM}



 $\mathcal{M}_{\langle M, \omega \rangle}$ implements the following algorithm:

On input $\zeta \in \Sigma^*$ {

- Replace ζ with ω on the tape, and enter M's start state (so that M is in its initial configuration for input ω).
- Run M (now, with input ω) accepting if M eventually accepts ω , rejecting if M eventually rejects ω , and *looping* otherwise.

 All_{TM} and f

If $\omega = \lambda$ then step 1 can be expanded as follows — where $\sigma_1 \in \Sigma$ is as described in Lecture #12:

- 1a) Replace the symbol on the first cell of the tape with σ_1 , moving right.
- Replace each non-blank symbol (after the copy of σ_1) with \square , moving right. Move left when \sqcup is seen without changing it.
- 1c) Move left past each copy of ⊔ without changing it. When a non-blank symbol is seen replace this with \square , moving left, and enter the start state for M.

This can be implemented using three states (which will be named q_0 , q_1 and q_2).

If $|\omega| = 1$, so that $\omega = \alpha_1$ for some symbol $\alpha_1 \in \Sigma$, then step 1 can be expanded as follows, instead.

- 1a) Replace the symbol on the first cell of the tape with α_1 , moving right.
- 1b) Replace the symbol on the second cell of the tape with \square , moving right.
- Replace each non-blank symbol (after the second cell) with □, moving right. Move left when \sqcup is seen without changing it.
- Move left over each copy of □ on the tape without changing it. When a non-blank symbol (which must be σ_1) is seen, move left without changing this symbol, and enter the start state for M.

This can be implemented using four states (named q_0 , q_1 , q_2 and q_3).

If $|\omega| = n > 2$, so that

$$\omega = \alpha_1 \alpha_2 \dots \alpha_n$$

for symbols $\alpha_1, \alpha_2, \dots, \alpha_n \in \Sigma$, then step 1 can be expanded as follows.

- 1a) Replace the symbol on the first cell of the tape with \sqcup , moving right.
- 1b) for i = 2, 3, ..., n { Replace the symbol on the tape with α_i , moving right.
- 1c) Replace the symbol now visible (at the $n+1^{st}$ cell) with \square , moving right.

- Replace each non-blank symbol (after the 1d) $n + 1^{st}$ cell) with \Box , moving right. Move left when \sqcup is seen without changing it.
- 1e) Move left past each copy of □, without changing it. When a non-blank symbol is seen move left past it, without changing it either.
- Move left past each non-blank symbol with-1f) out changing it. When \sqcup is seen, replace this with α_1 , moving left, and enter the start state for M.

This can be implemented using n + 3 states (named $q_0, q_1, \ldots, q_{n+2}$).

 States must be renamed in the copy of M included in $\mathcal{M}_{\langle M, \omega \rangle}$: If *M* included the set of states

$$Q = \{q_0, q_1, \dots, q_k, q_{\mathsf{accept}}, q_{\mathsf{reject}}\}$$

for some non-negative integer k then, for each integer i such that 0 < i < k, the name of state q_i should be changed to q_{i+n+3} (for $n = |\omega|$, as above).

Exercise:

 All_{TM} and f

• Confirm that if $\mathcal{M}_{\langle M,\,\omega\rangle}$ is produced from M and ω as described, above, then $\mathcal{M}_{\langle M,\,\omega\rangle}$ is a Turing machine with n+k+5 states that implements the above algorithm.

If $\mu \in A_{TM}$ then $f(\mu) \in All_{TM}$

Claim #1: Let $\mu \in \Sigma_{\mathsf{TM}}^{\star}$. If $\mu \in \mathsf{A}_{\mathsf{TM}}$ then $f(\mu) \in \mathsf{All}_{\mathsf{TM}}$.

Proof: Let $\mu \in \Sigma_{\mathsf{TM}}^{\star}$ such that $\mu \in \mathsf{A}_{\mathsf{TM}}$

- Then μ is the encoding of a Turing machine M and input string ω , for M, such that M accepts ω .
- Consider the Turing machine $\mathcal{M}_{\langle M, \omega \rangle}$.
- M_(M,ω) replaces its input string, ζ, with ω and then runs M. Since M eventually accepts ω, the input string ζ is eventually accepted by M_(M,ω).
- Thus the language of $\mathcal{M}_{\langle M, \omega \rangle}$ is Σ^* .
- Thus this machine's encoding, $f(\omega)$, is in All_{TM}.

If $\mu \notin A_{TM}$ then $f(\mu) \notin All_{TM}$

Claim #2: Let $\mu \in \Sigma_{TM}^{\star}$. If $\mu \notin A_{TM}$ then $f(\mu) \notin All_{TM}$.

Proof: Let $\mu \in \Sigma_{TM}^{\star}$ such that $\mu \notin A_{TM}$. One of three cases holds:

- 1. $\mu \notin TM+I$.
- 2. $\mu \in TM+I$, but μ is the encoding of a Turing machine M and input string ω , for M, such that M rejects ω .
- 3. $\mu \in TM+I$, but μ is the encoding of a Turing machine M and input string ω , for M, such that M loops on ω .

Case: μ ∉ TM+I.

- Then $f(\mu) = \lambda$.
- Since $\lambda \notin TM$, $\lambda \notin All_{TM}$, as required.

If $\mu \notin A_{TM}$ then $f(\mu) \notin All_{TM}$

Case: $\mu \in TM+I$, but μ is the encoding of a Turing machine M and input string ω , for M, such that M rejects ω .

- Consider the Turing machine $\mathcal{M}_{\langle M, \omega \rangle}$.
- $\mathcal{M}_{\langle M,\,\omega\rangle}$ *rejects* replaces its input string ζ with ω and then runs M. Since M eventually rejects ω , the input string ζ is eventually rejected by $\mathcal{M}_{\langle M, \omega \rangle}$.
- Thus the language of $\mathcal{M}_{\langle M, \omega \rangle}$ is \emptyset .
- Thus this machine's encoding, $f(\mu)$, is not in All_{TM}, as required.

If $\mu \notin A_{TM}$ then $f(\mu) \notin All_{TM}$

Case: $\mu \in TM+I$, but μ is the encoding of a Turing machine M and input string ω , for M, such that M loops on ω .

- Consider the Turing machine $\mathcal{M}_{\langle M, \omega \rangle}$.
- $\mathcal{M}_{(M,\omega)}$ replaces its input string ζ with ω and then runs M. Since M loops on ω , $\mathcal{M}_{\langle M, \omega \rangle}$ loops on its input string, ζ .
- Thus the language of $\mathcal{M}_{\langle M, \omega \rangle}$ is \emptyset .
- Thus this machine's encoding, $f(\mu)$, is not in All_{TM}, as required.

It has now been shown that $f(\mu) \notin All_{TM}$ in all cases, as needed to establish the claim.

f is Computable

Claim #3: The function *f* is computable.

Sketch of Proof: Recall that the language TM+I is **decidable** — so that it is possible to use a Turing machine to decide whether the input string, μ , belongs to TM+I.

- If $\mu \notin TM+I$ then $f(\mu)$ is the empty string which is certainly easy to compute.
- Otherwise $f(\mu)$ is the *encoding* of a Turing machine, $\mathcal{M}_{\langle M,\,\omega\rangle}$, that is as described above. The proof of this claim can be completed by giving additional details about $\mathcal{M}_{\langle M,\,\omega\rangle}$, as needed to show how $f(\mu)$ is related is to μ and to see that $f(\mu)$ can be *computed* from μ .

A supplemental document provides some of these details.

Finishing the Proof

- Since f is a well defined total function from Σ_{TM}^* to Σ_{TM}^* , Claims #1, #2 and #3 imply that f is a *many-one* **reduction** from A_{TM} to All_{TM}.
- Thus A_{TM} ≺_M All_{TM}.
- Since A_{TM} is undecidable it now follows that All_{TM} is undecidable, as well.