Instructor: Wayne Eberly Department of Computer Science University of Calgary Lecture #16 All_{TM} and f ## Goal for Today Another proof that a language is undecidable, using a many-one reduction, will be presented. ## Decidable Languages Recall that the following languages have been proved to be decidable: - TM $\subseteq \Sigma_{TM}^{\star}$: Valid encodings of Turing machines (whose start state is not a halting state) - TM+I ⊆ Σ^{*}_{TM}: Valid encodings of Turing machines M and strings of symbols over the input alphabet for M. ## Undecidable Languages ### The following languages are *undecidable:* - $A_{TM} \subseteq TM+I \subseteq \Sigma_{TM}^*$: Encodings of Turing machines M and strings ω of symbols over the input alphabet for M such that *M* accepts ω (see Lecture #13) - HALT_{TM} ⊆ TM+I ⊆ Σ^{*}_{TM}: Encodings of Turing machines M and strings ω of symbols over the input alphabet for M such that *M* halts when executed on input ω (see Lecture #15) ## The Language All_{TM} Let $All_{TM} \subseteq \Sigma_{TM}^*$ be the set of encodings of Turing machines $$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$$ (whose start state is not a halting state) such that $L(M) = \Sigma^*$. - $All_{TM} \subseteq TM$. - We will prove that All_{TM} is undecidable by proving that $A_{TM} \prec_M All_{TM}$. ### What Do We Need to Do? We must describe a total function $f: \Sigma_{TM}^{\star} \to \Sigma_{TM}^{\star}$ which satisfies the following properties: - For every string $\mu \in \Sigma_{TM}^{\star}$, $\mu \in A_{TM}$ if and only if $f(\mu) \in All_{TM}$. - The function f is computable. ### Handling a Pesky Case All_{TM} and f - Not all strings in Σ^{*}_{TM} encode Turing machines and input strings for them — only strings in the *decidable* language TM+I do. - If $\mu \in \Sigma_{\mathsf{TM}}^{\star}$ and $\mu \notin \mathsf{TM}+\mathsf{I}$ then $\mu \notin \mathsf{A}_{\mathsf{TM}}$, since $\mathsf{A}_{\mathsf{TM}} \subseteq \mathsf{TM}+\mathsf{I}$. We want to define $f(\mu)$ so that $f(\mu) \notin \mathsf{All}_{\mathsf{TM}}$ in this case. - Recall that All_{TM} ⊆ TM, where TM is the language of encodings of Turing machines. If x_{No} is any string in Σ^{*}_{TM} such that x_{No} ∉ TM then x_{No} ∉ All_{TM} — so that setting f(μ) to be x_{No} ensures that f(μ) ∉ All_{TM}, as is needed here. - Since $\lambda \notin TM$ we can choose x_{No} to be λ for this problem. We are left with the problem of defining $f(\mu)$ when $\mu \in TM+I$. • In this case μ is the encoding of some Turing machine $$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$$ and some input string $\omega \in \Sigma^*$ for the encoded Turing machine M. • Suppose that we set $f(\mu)$ to be the encoding of another Turing machine, $\mathcal{M}_{\langle M, \omega \rangle}$, with the same input alphabet, Σ , as M, the same tape alphabet, Γ , as M, and such that $\mathcal{M}_{\langle M, \omega \rangle}$ has the structure shown on the following slide. All_{TM} and f ## A Reduction from A_{TM} to All_{TM} $\mathcal{M}_{\langle M, \omega \rangle}$ implements the following algorithm: On input $\zeta \in \Sigma^*$ { - Replace ζ with ω on the tape, and enter M's start state (so that M is in its initial configuration for input ω). - Run M (now, with input ω) accepting if M eventually accepts ω , rejecting if M eventually rejects ω , and *looping* otherwise. All_{TM} and f If $\omega = \lambda$ then step 1 can be expanded as follows — where $\sigma_1 \in \Sigma$ is as described in Lecture #12: - 1a) Replace the symbol on the first cell of the tape with σ_1 , moving right. - Replace each non-blank symbol (after the copy of σ_1) with \square , moving right. Move left when \sqcup is seen without changing it. - 1c) Move left past each copy of ⊔ without changing it. When a non-blank symbol is seen replace this with \square , moving left, and enter the start state for M. This can be implemented using three states (which will be named q_0 , q_1 and q_2). If $|\omega| = 1$, so that $\omega = \alpha_1$ for some symbol $\alpha_1 \in \Sigma$, then step 1 can be expanded as follows, instead. - 1a) Replace the symbol on the first cell of the tape with α_1 , moving right. - 1b) Replace the symbol on the second cell of the tape with \square , moving right. - Replace each non-blank symbol (after the second cell) with □, moving right. Move left when \sqcup is seen without changing it. - Move left over each copy of □ on the tape without changing it. When a non-blank symbol (which must be σ_1) is seen, move left without changing this symbol, and enter the start state for M. This can be implemented using four states (named q_0 , q_1 , q_2 and q_3). If $|\omega| = n > 2$, so that $$\omega = \alpha_1 \alpha_2 \dots \alpha_n$$ for symbols $\alpha_1, \alpha_2, \dots, \alpha_n \in \Sigma$, then step 1 can be expanded as follows. - 1a) Replace the symbol on the first cell of the tape with \sqcup , moving right. - 1b) for i = 2, 3, ..., n { Replace the symbol on the tape with α_i , moving right. - 1c) Replace the symbol now visible (at the $n+1^{st}$ cell) with \square , moving right. - Replace each non-blank symbol (after the 1d) $n + 1^{st}$ cell) with \Box , moving right. Move left when \sqcup is seen without changing it. - 1e) Move left past each copy of □, without changing it. When a non-blank symbol is seen move left past it, without changing it either. - Move left past each non-blank symbol with-1f) out changing it. When \sqcup is seen, replace this with α_1 , moving left, and enter the start state for M. This can be implemented using n + 3 states (named $q_0, q_1, \ldots, q_{n+2}$). States must be renamed in the copy of M included in $\mathcal{M}_{\langle M, \omega \rangle}$: If *M* included the set of states $$Q = \{q_0, q_1, \dots, q_k, q_{\mathsf{accept}}, q_{\mathsf{reject}}\}$$ for some non-negative integer k then, for each integer i such that 0 < i < k, the name of state q_i should be changed to q_{i+n+3} (for $n = |\omega|$, as above). ### Exercise: All_{TM} and f • Confirm that if $\mathcal{M}_{\langle M,\,\omega\rangle}$ is produced from M and ω as described, above, then $\mathcal{M}_{\langle M,\,\omega\rangle}$ is a Turing machine with n+k+5 states that implements the above algorithm. # If $\mu \in A_{TM}$ then $f(\mu) \in All_{TM}$ **Claim #1:** Let $\mu \in \Sigma_{\mathsf{TM}}^{\star}$. If $\mu \in \mathsf{A}_{\mathsf{TM}}$ then $f(\mu) \in \mathsf{All}_{\mathsf{TM}}$. *Proof:* Let $\mu \in \Sigma_{\mathsf{TM}}^{\star}$ such that $\mu \in \mathsf{A}_{\mathsf{TM}}$ - Then μ is the encoding of a Turing machine M and input string ω , for M, such that M accepts ω . - Consider the Turing machine $\mathcal{M}_{\langle M, \omega \rangle}$. - M_(M,ω) replaces its input string, ζ, with ω and then runs M. Since M eventually accepts ω, the input string ζ is eventually accepted by M_(M,ω). - Thus the language of $\mathcal{M}_{\langle M, \omega \rangle}$ is Σ^* . - Thus this machine's encoding, $f(\omega)$, is in All_{TM}. ## If $\mu \notin A_{TM}$ then $f(\mu) \notin All_{TM}$ **Claim #2:** Let $\mu \in \Sigma_{TM}^{\star}$. If $\mu \notin A_{TM}$ then $f(\mu) \notin All_{TM}$. *Proof:* Let $\mu \in \Sigma_{TM}^{\star}$ such that $\mu \notin A_{TM}$. One of three cases holds: - 1. $\mu \notin TM+I$. - 2. $\mu \in TM+I$, but μ is the encoding of a Turing machine M and input string ω , for M, such that M rejects ω . - 3. $\mu \in TM+I$, but μ is the encoding of a Turing machine M and input string ω , for M, such that M loops on ω . *Case:* μ ∉ TM+I. - Then $f(\mu) = \lambda$. - Since $\lambda \notin TM$, $\lambda \notin All_{TM}$, as required. # If $\mu \notin A_{TM}$ then $f(\mu) \notin All_{TM}$ Case: $\mu \in TM+I$, but μ is the encoding of a Turing machine M and input string ω , for M, such that M rejects ω . - Consider the Turing machine $\mathcal{M}_{\langle M, \omega \rangle}$. - $\mathcal{M}_{\langle M,\,\omega\rangle}$ *rejects* replaces its input string ζ with ω and then runs M. Since M eventually rejects ω , the input string ζ is eventually rejected by $\mathcal{M}_{\langle M, \omega \rangle}$. - Thus the language of $\mathcal{M}_{\langle M, \omega \rangle}$ is \emptyset . - Thus this machine's encoding, $f(\mu)$, is not in All_{TM}, as required. ## If $\mu \notin A_{TM}$ then $f(\mu) \notin All_{TM}$ Case: $\mu \in TM+I$, but μ is the encoding of a Turing machine M and input string ω , for M, such that M loops on ω . - Consider the Turing machine $\mathcal{M}_{\langle M, \omega \rangle}$. - $\mathcal{M}_{(M,\omega)}$ replaces its input string ζ with ω and then runs M. Since M loops on ω , $\mathcal{M}_{\langle M, \omega \rangle}$ loops on its input string, ζ . - Thus the language of $\mathcal{M}_{\langle M, \omega \rangle}$ is \emptyset . - Thus this machine's encoding, $f(\mu)$, is not in All_{TM}, as required. It has now been shown that $f(\mu) \notin All_{TM}$ in all cases, as needed to establish the claim. ## f is Computable *Claim #3:* The function *f* is computable. Sketch of Proof: Recall that the language TM+I is **decidable** — so that it is possible to use a Turing machine to decide whether the input string, μ , belongs to TM+I. - If $\mu \notin TM+I$ then $f(\mu)$ is the empty string which is certainly easy to compute. - Otherwise $f(\mu)$ is the *encoding* of a Turing machine, $\mathcal{M}_{\langle M,\,\omega\rangle}$, that is as described above. The proof of this claim can be completed by giving additional details about $\mathcal{M}_{\langle M,\,\omega\rangle}$, as needed to show how $f(\mu)$ is related is to μ and to see that $f(\mu)$ can be *computed* from μ . A supplemental document provides some of these details. # Finishing the Proof - Since f is a well defined total function from Σ_{TM}^* to Σ_{TM}^* , Claims #1, #2 and #3 imply that f is a *many-one* **reduction** from A_{TM} to All_{TM}. - Thus A_{TM} ≺_M All_{TM}. - Since A_{TM} is undecidable it now follows that All_{TM} is undecidable, as well.