Lecture #16: Proofs of Undecidability — Examples I Lecture Presentation

Languages of Interest

• TM+I: The language of encodings of Turing machines

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$$

and input strings $\omega \in \Sigma^{\star}$. This language is *decidable*.

- A_{TM} : A subset of TM+I, including encodings of Turing machines M (as above) and strings $\omega \in \Sigma^*$ such that M accepts ω . This language is **recognizable**, since it is the language of the "universal Turing machine" introduced in Lecture #12 but it is also **undecidable**, as shown in Lecture #13.
- HALT_{TM}: Another subset of TM+I, including encodings of Turing machines M (as above) and strings $\omega \in \Sigma^*$ such that M halts when executed on input ω .

Goal for Today

The goal for this presentation is to establish that

$$A_{TM} \leq_M HALT_{TM}$$

— introducing a process that can be used to establish many-one reductions, like these, along the way.

Using the Decidability of the Language TM+I

Thinking about Turing Machines and Input Strings

Suppose that the input string, $\mu \in \Sigma_{\mathrm{TM}}^{\star}$ encodes a Turing machine

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\mathsf{accept}}, q_{\mathsf{reject}})$$

and an input string

$$\omega \in \Sigma^{\star}$$
.

- Either M accepts ω , M rejects ω , or M loops on ω .
- Since the membership of the string $f(\mu)$ in the language HALT_{TM} \subseteq TM+I is being considered, we can consider $f(\mu)$ to be an encoding of a Turing machine

$$\widehat{M} = (\widehat{Q}, \widehat{\Sigma}, \widehat{\Gamma}, \widehat{\delta}, \widehat{q}_0, \widehat{q}_{\text{accept}}, \widehat{q}_{\text{reject}})$$

and a string

$$\widehat{\omega} \in \widehat{\Sigma}^{\star}$$

- so that $f(\mu) \in \mathsf{TM+I}$ when $\mu \in \mathsf{TM+I}$.
- Since we will need to show that the function f,\widehat{M} and $\widehat{\omega}$ should easy to describe from M and $\widehat{\omega}$.

Case: M accepts ω . What property should \widehat{M} and $\widehat{\omega}$ satisfy? Why?

Case: M rejects ω . What property should \widehat{M} and $\widehat{\omega}$ satisfy? Why?

Case: M loops on ω . What property should \widehat{M} and $\widehat{\omega}$ satisfy? Why?

What Should \widehat{M} and $\widehat{\omega}$ Be?

Describing This in More Detail

Once again,

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\mathsf{accept}}, q_{\mathsf{reject}})$$

and

$$\widehat{M} = (\widehat{Q}, \widehat{\Sigma}, \widehat{\Gamma}, \widehat{\delta}, \widehat{q}_0, \widehat{q}_{\mathsf{accept}}, \widehat{q}_{\mathsf{reject}}).$$

How is \widehat{Q} Related To Q?

How is $\widehat{\Sigma}$ Related To Σ ?

How is $\widehat{\Gamma}$ Related To Γ ?

How is $\widehat{\delta}$ Related To δ ?

How are \widehat{q}_0 $\widehat{q}_{\sf accept}$ and $\widehat{q}_{\sf reject}$ Related To q_0 , $q_{\sf accept}$ and $q_{\sf reject}$?

How is $f(\mu)$ Related To μ When $\mu \in \mathsf{TM+I}$?

Since $\mu \in TM+I$,

$$\mu = (\mu_1, \mu_2) \tag{1}$$

where μ_1 is the encoding of the Turing machine μ_1 and μ_2 is the encoding of the string ω . If $f(\mu)$ is as described above then

$$f(\mu) = (\widehat{\mu}_1, \widehat{\mu}_2) \tag{2}$$

where $\widehat{\mu}_1$ is the encoding of the Turing machine $\widehat{\mu}_1$ and $\widehat{\mu}_2$ is the encoding of the string $\widehat{\mu}_2$. As described in the lecture on "universal Turing machines",

$$\mu_1 = (\mu_{1,1}, \mu_{1,2}, \mu_{1,3}, \mu_{1,4})$$
 (3)

where the following properties are satisfied.

- $\mu_{1,1}$ is the encoding of the set of states Q the unpadded decimal representation of the integer k such that |Q| = k + 3.
- $\mu_{1,2}$ is the encoding of the input alphabet Σ the unpadded decimal representation of the positive integer h such that $|\Sigma| = h$.
- $\mu_{1,3}$ is the encoding of the tape alphabet Γ the unpadded decimal representation o the positive integer m such that $|\Gamma| = m + 1$.
- $\mu_{1,4}$ is the encoding of the transition function δ a listing of encodings of the transitions of M, separated by commas and enclosed by brackets, given in "dictionary" order.

Similarly,

$$\widehat{\mu}_1 = (\widehat{\mu}_{1,1}, \widehat{\mu}_{1,2}, \widehat{\mu}_{1,3}, \widehat{\mu}_{1,4}) \tag{4}$$

where the following properties are satisfied.

- $\widehat{\mu}_{1,1}$ is the encoding of the set of states \widehat{Q} the unpadded decimal representation of the integer \widehat{k} such that $|\widehat{Q}| = \widehat{k} + 3$.
- $\widehat{\mu}_{1,2}$ is the encoding of the input alphabet $\widehat{\Sigma}$ the unpadded decimal representation of the positive integer \widehat{h} such that $|\widehat{\Sigma}| = \widehat{h}$.
- $\widehat{\mu}_{1,3}$ is the encoding of the tape alphabet $\widehat{\Gamma}$ the unpadded decimal representation of the positive integer \widehat{m} such that $|\widehat{\Gamma}| = \widehat{m} + 1$.
- $\widehat{\mu}_{1,4}$ is the encoding of the transition function $\widehat{\delta}$ a listing of encodings of the transitions of \widehat{M} , separated by commas and enclosed by brackets, given in "dictionary" order.

How is \widehat{k} related to k ? How is $\widehat{\mu}_{1,1}$ related to $\mu_{1,1}$?

How is \widehat{h} related to h ? How is $\widehat{\mu}_{1,2}$ related to $\mu_{1,2}$?

How is \widehat{m} related to m? How is $\widehat{\mu}_{1,3}$ related to $\mu_{1,3}$?

How are the transitions of \widehat{M} related to the transitions of M ? How is $\widehat{\mu}_{1,4}$ related to $\mu_{1,4}$?

How is the encoding $\widehat{\mu}_2$, of $\widehat{\omega}$, related to the encoding μ_2 , of ω ?

How Can We Use All of This?

Suppose that an algorithm has already been used to confirm that $\mu \in \mathsf{TM+I}$ and, furthermore, that the strings $\mu_{1,1}, \, \mu_{1,2}, \, \mu_{1,3}, \, \mu_{1,4}$ and μ_2 (as shown at lines (1) and (3)) have all been written to separate tapes of a multi-tape Turing machine — so that a "high-level" algorithm would have access to the values $k, \, h, \, m$ and the transitions of M, as described above.

A "high-level" algorithm that completes the computation of $f(\mu)$, from μ , in this case, is as follows:

Implementation-level details that might help a reader to understand, and agree, that the function f is computable, might include the following.

What about "Stage #1" of Assignment #2?

Writing Up the Solution: A First Claim and Its Proof

Writing Up the Solution: A Second Claim and Its Proof

Writing Up the Solution: A Third Claim and Its Proof

Conclusion

A Suggested Exercise