Lecture #15: Many-One Reductions Lecture Presentation

1. Recall that an alphabet

 $\Sigma_D = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

was introduced. Following the definitions of the *unpadded decimal expansion* of a positive integer n, the *unpadded decimal representation* of a natural number n as a string in Σ_D^* , the set Unpad $\subseteq \Sigma_D^*$ of unpadded decimal representations of natural numbers, a (possibly) *padded decimal representation* of a natural number n, and the set Pad $\subseteq \Sigma_D^*$ of (possibly) padded decimal representations of natural numbers, a set $S \subseteq \mathbb{N}$ was introduced and used to define *two* languages, $\mathcal{U}_S \subseteq$ Unpad $\subseteq \Sigma_D^*$ and $\mathcal{P}_S \subseteq$ Pad $\subseteq \Sigma_D^*$:

- $U_S \subseteq$ Unpad is the set of all *unpadded decimal representations* of numbers $n \in S$.
- $\mathcal{P}_S \subseteq$ Pad is the set of all *padded decimal representations* of numbers $n \in S$.

Our goal is to prove that $\mathcal{U}_S \preceq_{\mathsf{M}} \mathcal{P}_S$ for *every* subset $S \subseteq \mathbb{N}$.

What We Need To Provide — and the Properties It Must Satisfy:

Let $\omega \in \Sigma_D^{\star}$. What Can We Set $f(\omega)$ To Be, When $\omega \notin$ Unpad? Why?

What Can We Set $f(\omega)$ To Be, When $\omega \in$ Unpad Why?

The Function f :

A First Claim about f and Its Proof:

A Second Claim About f and Its Proof:

A Third Claim About f and Its Proof:

2. The lecture notes introduced a language HALT_{TM} \subseteq TM+I and a proof that

 $HALT_{TM} \preceq_M A_{TM}$.

Recall that $\mathsf{HALT}_\mathsf{TM}$ was the set of encodings of Turing machines

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$$

and input string $\omega \in \Sigma^*$ such that *M*'s execution on the input string ω halts, while A_{TM} is another subset of TM+I, namely the set of encodings of Turing machines *M* (as above) and input strings $\omega \in \Sigma^*$ such that *M* accepts ω .

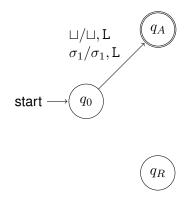
Suppose we wish to prove that $A_{TM} \preceq_M HALT_{TM}$. What do we need to provide — and what properties must it satisfy?

Let $f_1: \Sigma^{\star}_{\mathsf{TM}} \to \Sigma^{\star}_{\mathsf{TM}}$ such that $f_1(\mu) = \mu$ for every string $\mu \in \Sigma^{\star}_{\mathsf{TM}}$.

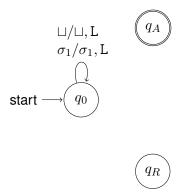
Is f_1 a Many-One Reduction from A_{TM} to $\mathsf{HALT}_{\mathsf{TM}}$?

Why — or Why Not?

Next let us consider a pair of Turing machines with input alphabet $\Sigma = \{\sigma_1\}$ and tape alphabet $\Gamma = \{\sigma_1, \sqcup\}$. The first of these Turing machines, M_Y , is as follows:



The second of these Turing machines, M_N , is as follows:



In both of these pictures the accept state is shown as " q_A " instead of q_{accept} , and the reject state is shown as " q_R " instead of " q_{reject} ", to simplify the picture.

Now note that if $x_{\text{Yes}} \in \Sigma_{\text{TM}}^{\star}$ is the encoding of the above Turing machine M_Y , and the empty string λ , then $x_{\text{Yes}} \in \text{HALT}_{\text{TM}}$. On the other hand, if $x_{\text{No}} \in \Sigma_{\text{TM}}^{\star}$ is the encoding of the Turing machine M_N , and the empty string λ , then $x_{\text{no}} \notin \text{HALT}_{\text{TM}}$.

Let $f_2: \Sigma^{\star}_{\mathsf{TM}} \to \Sigma^{\star}_{\mathsf{TM}}$ such that, for every string $\mu \in \Sigma^{\star}_{\mathsf{TM}}$,

$$f_2(\mu) = \begin{cases} x_{\mathsf{Yes}} & \text{if } \mu \in \mathsf{A}_{\mathsf{TM}}, \\ x_{\mathsf{No}} & \text{if } \mu \notin \mathsf{A}_{\mathsf{TM}}. \end{cases}$$

Is f_2 a Many-One Reduction from A_{TM} to $\mathsf{HALT}_{\mathsf{TM}}$?

Why — or Why Not?

One More Attempt: