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Many-One Reductions

Let Σ1 and Σ2 be two alphabets (possibly the same) and let

L1 ⊆ Σ⋆

1 and L2 ⊆ Σ⋆

2 be two languages over these alphabets.

Definition: A many-one reduction from L1 to L2 is a total

function

f : Σ⋆

1 → Σ⋆

2

such that the following properties are satisfied.

(a) For every string ω ∈ Σ⋆

1, ω ∈ L1 if and only if f (ω) ∈ L2.

(b) The function f is computable.

We will say that L1 is many-one reducible to L2, and write

L1 �M L2

if a many-one reduction from L1 to L2 exists.



Definition Example Process Properties

Many-One Reductions

• It might help to think of a many-one reduction as being like

a signal converter :

It is, effectively, converting an instance of one problem into

an instance of another problem that has the same solution

as the instance it was given.
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An Example of a Many-One Reduction

Recall that

• TM = {ζ ∈ Σ⋆

TM |

ζ is a valid encoding of a Turing machine M}

• TM+I = {ζ ∈ Σ⋆

TM | ζ is a valid encoding of a

Turing machine M and input string ω for M}

• ATM, the subset of TM+I including valid encodings of Turing

machines M and input strings ω for M such that M

accepts ω.

It has already been argued that TM and TM+I are both

decidable. On the other hand, ATM is recognizable but also

undecidable.



Definition Example Process Properties

An Example of a Many-One Reduction

Now consider another language:

• HALTTM, the subset of TM+I including valid encodings of

Turing machines M and input strings ω for M such that M

halts when executed on input ω.
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An Example of a Many-One Reduction

Consider a function

f1 : Σ⋆

TM → Σ⋆

TM

that is defined as follows, for an input ζ ∈ Σ⋆

TM.

• If ζ ∈ Σ⋆

TM and ζ /∈ TM+I then f1(ζ) = ζ.

• Suppose, instead, that ζ ∈ TM+I — so that ζ encodes

some Turing machine

M = (Q,Σ, Γ, δ,q0,qaccept,qreject)

with an input alphabet Σ and some string ω ∈ Σ⋆.
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Example of a Many-One Reduction

• Let

M1 = (Q,Σ, Γ, δ̂,q0,qaccept,qreject)

with the same set of states, input alphabet, tape alphabet,

start state, accepting state and halting state, but where, for

q ∈ Q \ {qaccept,qreject} and σ ∈ Γ,

δ̂(q, σ) =





δ(q, σ) if δ(q, σ) = (r , τ,m)

where r 6= qreject,

(qaccept, τ,m) if δ(q, σ) = (qreject, τ,m)

where r ∈ Q, τ ∈ Γ, and m ∈ {L,R} in the above definition.

Thus transitions to the rejecting state are replaced with

similar transitions to the accepting state in M1, and

everything else is the same.
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Example of a Many-One Reduction

That is, if M looks like this...

q
A

q
R

r

s

M
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Example of a Many-One Reduction

Then M1 looks like this, instead...

q
A

q
R

r

s

M
1

• Now, if ζ encodes M and ω, let f1(ζ) be a string in Σ⋆

TM that

encodes M1 and ω, instead.
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Example of a Many-One Reduction

Claim #1: If ζ ∈ Σ⋆

TM and ζ ∈ HALTTM then f1(ζ) ∈ ATM.

Proof: Suppose that ζ ∈ HALTTM. Then ζ ∈ TM+I and ζ
encodes some Turing machine

M = (Q,Σ, Γ, δ,q0,qaccept,qreject)

and string ω ∈ Σ⋆ such that M halts when it is executed on

input ω.

Let f1(ζ) be as described, so that f1(ζ) encodes the above

Turing machine M1 and the input string ω.

Since M halts when executed on the input ω either M accepts ω
or M rejects ω. These cases are considered separately.
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Example of a Many-One Reduction

Case: M accepts ω.

• In this case M1 accepts ω too, because M1 follows exactly

the same sequence of configurations as M does.

• Since f1(ζ) encodes M1 and ω it now follows that

f1(ζ) ∈ ATM as claimed.
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Example of a Many-One Reduction

Case: M rejects ω.

• Consider the penultimate (second-to-last) configuration

that M reaches when executed on input ω. M1 reaches this

configuration too.

• However, if M is in state q ∈ Q \ {qaccept,qreject} at this

point and a symbol σ ∈ Γ is visible on M ’s tape then —

since M rejects ω in its next move — M continues by

applying a transition

δ(q, σ) = (qreject, τ,m)

for some symbol τ ∈ Γ and for m ∈ {L,R}.
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Example of a Many-One Reduction

• M1 must continue, instead, by applying a transition

δ̂(q, σ) = (qaccept, τ,m)

so that M1 accepts ω in its next step, instead.

• Once again, since f1(ζ) encodes M1 and ω, it follows that

f1(ζ) ∈ ATM in this case too — as needed to complete the

proof of the claim.



Definition Example Process Properties

Example of a Many-One Reduction

Claim #2: If ζ ∈ Σ⋆

TM and ζ /∈ HALTTM then f1(ζ) /∈ ATM.

Proof:

• Suppose that ζ ∈ Σ⋆

TM and ζ /∈ HALTTM. Then either

ζ /∈ TM+I or ζ ∈ TM+I but ζ /∈ HALTTM; these cases are

considered separately.

Case: ζ /∈ TM+I.

• In this case f1(ζ) = ζ /∈ TM+I, so that f1(ζ) /∈ ATM, as

required.
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Example of a Many-One Reduction

Case: ζ ∈ TM+I but ζ /∈ HALTTM.

• In this case ζ encodes the Turing machine M and input

string ω as described above.

• In this case M loops on ω.

• However, M1 loops on ω too. Indeed, M1 follows the same

infinite sequence of transitions on the input ω as M does.

• Since f1(ζ) encodes M1 and ω it follows that f1(ζ) /∈ ATM in

this case too — as needed to complete the proof of this

claim.
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Example of a Many-One Reduction

Claim #3: The total function f1 : Σ⋆

TM → Σ⋆

TM is a computable

total function.

Proof: It follows from its definition that f1 is a total function

from Σ⋆

TM to Σ⋆

TM. It remains to prove that f1 is also a

computable function.

• Recall that the language TM+I is decidable, so that it is

possible to include a test

if (ζ ∈ TM+I)

as part of an algorithm that computes f1.

• Now, if ζ /∈ TM+I then f1(ζ) = ζ. The identity function is

certainly computable - so it remains only to prove that f1(ζ)
is also computable when ζ ∈ TM+I.
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Example of a Many-One Reduction

• Suppose, now, that ζ ∈ TM+I. Then — as described in

Lecture #12 — ζ has the form

(ν,ρ) (1)

where ν encodes a Turing machine and ρ encodes an input

string for this Turing machine.

The encoding, ρ, does not include any commas, so that the

comma between ν and ρ, shown above, is the rightmost

comma in ζ — making the substrings ν and ρ easy to find.
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Example of a Many-One Reduction

• As described in Lecture #12, if ν encodes a Turing machine

M = (Q,Σ, Γ, δ,q0,qaccept,qreject)

then ν has the form

(α,β,γ,ϕ) (2)

where
• α encodes the set Q of states in M;
• β encodes the input alphabet Σ;
• γ encodes the tape alphabet Γ; and
• ϕ encodes the transition function δ.

The substrings α, β and γ do not include any commas —

so that the commas separating the substrings, above, are

the first three commas in ν. This makes the substrings α,

β, γ and δ easy to find.
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Example of a Many-One Reduction

• A consideration of the description of encodings of

transition functions, previously supplied, should confirm

that it is easy to produce a string ϕ̂ encoding the transition

function for M1 from the string ϕ encoding the transition

function for M: All that you need to do is replace

occurrences of N in ϕ with occurrences of Y in ϕ̂ — leaving

all other symbols unchanged.
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Example of a Many-One Reduction

• A string ν̂ encoding M1 can be computed from ν that

encodes M as well — for ν̂ has the form

(α,β,γ,ϕ̂)

where α, β and γ are as shown at line (2), above.

• It now follows that f1(ζ) is computable from ζ: f1(ζ) has the

form

(ν̂,ρ)

where ρ is as shown at line (1), above.

This completes the proof of Claim #3.
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Example of a Many-One Reduction

Since all properties of a “many-one reduction” have now been

established it follows that the above function

f1 : Σ⋆

TM → Σ⋆

TM

is a many-one reduction from HALTTM to ATM.

Thus

HALTTM �M ATM.
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Process Followed To Provide

a Many-One Reduction

To prove that a language L1 ⊆ Σ⋆

1 is many-one reducible to a

language L2 ⊆ Σ⋆

2,

1. Clearly and precisely describe a total function f : Σ⋆

1 → Σ⋆

2.

2. Prove that if x ∈ L1 then f (x) ∈ L2 for every string x ∈ Σ⋆.

3. Prove that if x /∈ L1 then f (x) /∈ L2 for every string x ∈ Σ⋆.

4. Sketch a Proof that f is computable — including enough

detail for it to be reasonably clear that you really could

write a Python or Java program that computes this function

from strings to strings.

This process has been followed in the above example.
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Mistakes To Watch For and Avoid

• Giving a definition of f that is vague, ambiguous, or

just-plain-unreadable.

• Defining a partial function from Σ⋆

1 to Σ⋆

2 (that is not

defined for every string x ∈ Σ⋆

1) instead of a total function.

• Forgetting about step 3, above — It is not sufficient just to

show that if x ∈ L1 then f (x) ∈ L2.

• Failing to include enough detail at the end for it to be clear

that your function f really is computable — sometimes

because f has not been clearly defined and sometimes

because it has, but f is not actually computable at all!
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The Set of Many-One Reductions

Forms a Reducibility

• Recall that a reducibility is any binary relation �Q

between languages (possibly over different alphabets)
such the following properties are satisfied.

(a) L �Q L for every language L ⊆ Σ⋆ (and for every

alphabet Σ).
(b) For all languages L1 ⊆ Σ⋆

1, L2 ⊆ Σ⋆

2 and L3 ⊆ Σ⋆

3 (and

alphabets Σ1, Σ2 and Σ3) if L1 �Q L2 and L2 �Q L3 then
L1 �Q L3.

• One kind of reducibility — the set of all oracle reductions

between languages was introduced in the previous lecture.



Definition Example Process Properties

The Set of Many-One Reductions

Forms a Reducibility

Claim #4: The set of many-one reductions forms a reducibility.

• This means that L �M L for every language L ⊆ Σ⋆ (and

every alphabet Σ) and that, for all languages L1 ⊆ Σ⋆

1,

L2 ⊆ Σ⋆

2 and L3 ⊆ Σ⋆

3 (for alphabets Σ1, Σ2 and Σ3), if

L1 �M L2 and L2 �M L3 then L1 �M L3.

• A proof of Claim #4 is given in a supplemental document

for this lecture.
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A Relationship Between Reducibilities

Claim #5: Let L1 ⊆ Σ⋆

1 and let L2 ⊆ Σ⋆

2. If L1 �M L2 then

L1 �O L2.

Proof: Let L1 ⊆ Σ⋆

1 and let L2 ⊆ Σ⋆

2 such that L1 �M L2.

• Then there exists a total function f : Σ⋆

1 → Σ⋆

2 such that

ω ∈ L1 if and only if f (ω) ∈ L2 for all ω ∈ Σ⋆

1 such that f is

computable.

• Consider an oracle Turing machine with an oracle for L2

that does the following when given an input string ω ∈ Σ⋆

1:

Compute f (ω), writing this onto the query tape and enter

the query state. If the oracle Turing machine is in its “Yes”

state immediately after that then accept ω. Otherwise

reject ω.

• Comparisons of definitions confirms that this gives an

oracle reduction from L1 to L2 — as needed to establish

the claim.
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Closure Properties

Claim: #6 Suppose that L1 ⊆ Σ⋆

1 and L2 ⊆ Σ⋆

2 (for alphabets Σ1

and Σ2) are languages such that L1 �M L2. If L2 is decidable

then L1 is decidable too.

Claim #7: Suppose that L1 ⊆ Σ⋆

1 and L2 ⊆ Σ⋆

2 (for alphabets Σ1

and Σ2) are languages such that L1 �M L2. If L2 is recognizable

then L1 is recognizable too.

• Proofs of Claim #5 and #6 are given in a supplemental

document for this lecture.
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Closure Properties

The following are “corollaries” of Claim #6 and of Claim #7,

respectively.

Corollary #8: Suppose that L1 ⊆ Σ⋆

1 and L2 ⊆ Σ⋆

2 (for

alphabets Σ1 and Σ2) are languages such that L1 �M L2. If L1

is undecidable then L2 is undecidable too.

Corollary #9: Suppose that L1 ⊆ Σ⋆

1 and L2 ⊆ Σ⋆

2 (for

alphabets Σ1 and Σ2) are languages such that L1 �M L2. If L1

is unrecognizable then L2 is unrecognizable too.
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Another Way to Prove Undecidability

Another process to prove that a language L ⊆ Σ
⋆ is

undecidable:

• Choose another language L̂ ⊆ Σ̂⋆ (over some alphabet Σ̂)

such that L̂ is undecidable.

• Prove that L̂ �M L.

• Conclude, by Corollary #8, above, that L must be

undecidable too.



Definition Example Process Properties

A Way to Prove Unrecognizability

A process to prove that a language L ⊆ Σ
⋆ is

unrecognizable:

• Choose another language L̂ ⊆ Σ̂⋆ (over some alphabet Σ̂)

such that L̂ is unrecognizable.

• Prove that L̂ �M L.

• Conclude, by Corollary #9, above, that L must be

unrecognizable too.
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A Relationship Between Reducibilities

Claim #10: There exist languages L1 ⊆ Σ⋆

1 and L2 ⊆ Σ⋆

2 (for

alphabets Σ1 and Σ2) such that L1 �O L2 but L1 6�M L2.

Proof: Recall, by Claim #11 from the previous lecture, that

there exist languages L ⊆ Σ⋆ and L̂ ⊆ Σ̂⋆ (for alphabets Σ
and Σ̂) such that L is not recognizable, L̂ is recognizable, and

L �O L̂. Let L1 = L and let L2 = L̂ (so that Σ1 = Σ and Σ2 = Σ̂).

• It follows by the choice of L1 and L2 that L1 �O L2, as

claimed.

• Suppose that L1 �M L2. Then, since L2 is recognizable it

follows by Claim #7 that L1 must be recognizable. However,

since L1 = L, L1 is not recognizable — and it now follows

by this contradiction that our assumption must be false.

That is, L1 6�M L2, as needed to establish the claim.
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Who Invented These?

• Emil Post was a Polish-American logician and

mathematician who made significant contributions to the

theory of computation.

• Many-one reductions were first used in a paper published

by Post in 1944.
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