
Reducibilities Oracle Reductions Example Properties

Computer Science 351
Oracle Reductions

Instructor: Wayne Eberly

Department of Computer Science
University of Calgary

Lecture #14



Reducibilities Oracle Reductions Example Properties

Goals for Today:

Goals for Today:

• Introduction to oracle reductions — which will provide

another (more reliable) way to prove that various

languages are undecidable

• A discussion of closure of various sets of languages with

respect to reducibilities, and a discussion of why this is

important.

Note: In my opinion, Introduction to the Theory of Computation

is not a good reference for this material.



Reducibilities Oracle Reductions Example Properties

Reducibilities

Definition #1: A reducibility is any binary relation �Q

between languages (possibly over different alphabets) such

that the following properties are satisfied.

(a) L �Q L for every language L ⊆ Σ⋆ (and for every

alphabet Σ).

(b) For all languages L1 ⊆ Σ⋆

1, L2 ⊆ Σ⋆

2 and L3 ⊆ Σ⋆

3 (and

alphabets Σ1, Σ2 and Σ3) if L1 �Q L2 and L2 �Q L3 then

L1 �Q L3.

Please consult your CPSC 251 or MATH 271 textbook (and

notes) to find the definition of a “binary relation.”



Reducibilities Oracle Reductions Example Properties

Oracle Reductions

Definition #2: An oracle for a language L ⊆ Σ
⋆

L is a device

that is capable of reporting whether any string ω ∈ Σ⋆

L is a

member of L.

• It is probably best to think of an oracle for a

language L ⊆ Σ⋆

L as being like a “black box” or method

from a library that you can call, as a subroutine that

can be relied on to decide membership in L.

You do not need to write this black box (or library routine)

or understand how it works — but you do get to use it.



Reducibilities Oracle Reductions Example Properties

Oracle Reductions

• It might also help to think of an oracle as being like a

component in a larger system:

Each component carries out a well-defined job. You do

not care how the component works, as long as it does the

job it is supposed to.



Reducibilities Oracle Reductions Example Properties

Oracle Reductions

• When you are describing an “oracle reduction to a

language L ⊆ Σ⋆, it will generally be sufficient to give

pseudocode — for whatever problem you are trying to

solve — that makes use of a separate Boolean method

that decides membership in L.

This method should receive a string µ ∈ Σ⋆ as input. Its

output should be true if µ ∈ L and its output should be false

if µ /∈ L. That is the only information about this method that

you should need to know or that you should be able to use.

However “oracle reductions” are more formally defined

(and their properties can be proved) using oracle Turing

machines, which are defined next.



Reducibilities Oracle Reductions Example Properties

Oracle Reductions

An oracle Turing machine ML with an oracle for a language

L ⊆ Σ
⋆

L is a modified deterministic multi-tape Turing machine

that is allowed to query an oracle for L in a single step:

• ΣL is a subset of the tape alphabet Γ of ML.

• ML has a special query tape that is initially blank.

• ML also has three special states:
• a query state, qQ,
• a yes state, qY ,
• a no state, qN

No “transitions” starting in state qQ are defined. Instead,

the behaviour or ML when in this state is as follows.



Reducibilities Oracle Reductions Example Properties

Oracle Reductions

• Whenever ML enters the query state and the non-blank

part of the query tape stores a string ω ∈ L (and nothing

else) then the query tape is filled with blanks and the

machine moves to state qY using a single step. The tape

head for the query tape also moves back to the leftmost

cell.

• Whenever ML enters the query state, and the query state

stores something different, then the query tape is filled with

blanks and the machine moves to state qN in a single step,

instead.

• ML acts like a regular Turing machine whenever it is in a

state different from qQ.



Reducibilities Oracle Reductions Example Properties

Oracle Reductions

The definitions of

• accepting, rejecting and looping on an input string,

• recognizing a language, and

• deciding a language

are all the same, for oracle Turing machines, as they are for

“standard” Turing machines.



Reducibilities Oracle Reductions Example Properties

Oracle Reductions

It might seem like this kind of device is...

Magic!!!



Reducibilities Oracle Reductions Example Properties

Oracle Reductions

Well... in a way, it really is.

• It is possible to use arguments involving an oracle

reduction with an oracle for L, for certain languages L, to

prove that L is undecidable — so that there is no algorithm

that can be used to decide membership in L, at all.



Reducibilities Oracle Reductions Example Properties

Oracle Reductions

Definition #3: For languages L1 ⊆ Σ⋆

1 and L2 ⊆ Σ⋆

2, an oracle

reduction from L1 to L2 is an oracle Turing machine, with an

oracle for L2, that decides the language L1.

L1 is oracle-reducible to L2,

L1 �O L2,

if there exists an oracle reduction from L1 to L2.



Reducibilities Oracle Reductions Example Properties

Oracle Reductions — An Example

Recall the alphabet ΣTM that was introduced in Lecture #12

along with the following languages (all of which are subsets

of Σ⋆

TM):

• TM+I ⊆ Σ⋆

TM is the language of encodings of Turing

machines M and input strings ω for M. As noted in

Lecture #13. this language is decidable.

• ATM ⊆ Σ⋆

TM is the language of encodings of Turing

machines M and input strings ω for M such that M

accepts ω. It was established in Lecture #12 that ATM is

recognizable — but it was also established in Lecture #13

that ATM is undecidable.



Reducibilities Oracle Reductions Example Properties

Oracle Reductions — An Example

• Let NATM ⊆ Σ⋆

TM be the language of encodings of Turing

machines M and input strings ω for M such that M does

not accept ω.

• It follows that that ATM ∪ NATM = TM+I and

ATM ∩ NATM = ∅.

• Consider the algorithm — which makes use of a

hypothetical method to decide membership in NATM, at

line 2 — which is shown on the following slide.



Reducibilities Oracle Reductions Example Properties

Oracle Reductions — An Example

boolean acceptInput (µ : Σ⋆

TM) {

1. if (µ ∈ TM+I)

2. if (µ ∈ NATM) {

3. reject µ

} else {

4. accept µ

}

} else {

5. reject µ

}

}



Reducibilities Oracle Reductions Example Properties

Oracle Reductions — An Example

Claim #4: Let µ ∈ ATM. Then, if the above algorithm is

executed on input µ, then this input string is accepted.

Proof: Let µ ∈ ATM and consider an execution of the above

algorithm on input µ.

• Since ATM ⊆ TM+I, µ ∈ TM+I and the test at at line 1 is

passed: The algorithm’s execution continues with the step

at line 2.

• Since ATM ∩ NATM = ∅, µ /∈ NATM and the test at line 2 is

failed: The algorithm’s execution continues with the step at

line 4.

• The string µ is accepted when the step at line 4 is

executed.

Since µ was arbitrarily chosen from ATM, it follows that the

algorithm accepts every string in ATM, as claimed.



Reducibilities Oracle Reductions Example Properties

Oracle Reductions — An Example

Claim #5: Let µ ∈ Σ⋆

TM such that µ /∈ ATM. Then, if the above

algorithm is executed on input µ, then this input string is

rejected.

Proof: Let µ ∈ Σ⋆

TM such that µ /∈ ATM. Then one of the

following cases holds.

(a) µ ∈ TM+I but µ /∈ ATM.

(b) µ /∈ TM+I.

The cases are considered separately on the following slides.



Reducibilities Oracle Reductions Example Properties

Oracle Reductions — An Example

(a) Case: µ ∈ TM+I but µ /∈ ATM. Since ATM ∪ NATM = TM+I it

follows that µ ∈ NATM. Consider an execution of the above

algorithm on input µ:

• Since µ ∈ TM+I the test at line 1 is passed when checked,

so that the execution of the algorithm continues with the

test at line 2.

• Since µ ∈ NATM the test at line 2 is also passed, so that the

execution of the algorithm continues with the step at line 3.

• The input string µ is rejected when the step at line 3 is

executed.

Thus the string µ is rejected in this case.



Reducibilities Oracle Reductions Example Properties

Oracle Reductions — An Example

(b) Case: µ /∈ TM+I. Consider an execution of the above

algorithm on input µ.

• Since µ /∈ TM+I the test at line 1 is failed when checked, so

that the execution of the algorithm continues with the step
at line 5.

• The input string µ is rejected when the step at line 5 is

executed.

Thus the string µ is rejected in this case.

Since µ is rejected in every case, and µ was an arbitrarily

chosen string in Σ⋆

TM such that µ /∈ ATM, this establishes the

claim.



Reducibilities Oracle Reductions Example Properties

Oracle Reductions — An Example

Claim #6: ATM �O NATM.

Proof: Consider an oracle Turing machine, with an oracle

for NATM, that begins by making a second copy of the input

string µ ∈ Σ⋆

TM on another tape, moving both tape heads back

to the leftmost cells of the tape.

The oracle Turing machine could then implement the algorithm

that is given above:

• Since the language TM+I is decidable, step #1 can be

carried out using a multii-Tape Turing machine whose

execution on an input string µ ∈ Σ⋆

TM, ending in one state if

µ ∈ TM+I and ending in a different state if µ /∈ TM+I.



Reducibilities Oracle Reductions Example Properties

Oracle Reductions — An Example

• If µ ∈ TM+I (so that the step at line 2 would be reached)

then the Turing machine’s oracle for NATM could be used to

carry out this step: The “other tape” that is mentioned,

above, should simply be the query tape — and the state

that the Turing machine should move to, after deciding that

µ ∈ TM, above, should be the Turing machine’s query

state.

The steps at lines 3 and 4 could be implemented by having

all transitions from the oracle Turing machine’s “yes” state

going to its “rejecting” state, and by having all transitions

from the oracle Turing machine’s “no” state going to its

“accepting state”.



Reducibilities Oracle Reductions Example Properties

Oracle Reductions — An Example

• It is sufficient to have the state that the Turing machine

moves to, after deciding that µ /∈ TM+I, be its “rejecting”

state, in order to implement the step at line 5.

• Thus the above algorithm can be implemented using an

oracle Turing machine with an oracle for NATM.

• It follows by Claims #4 and #5, above, that the algorithm

decides membership in ATM. Thus the oracle Turing

machine that implements it decides the language ATM, so

that ATM �O NATM, as claimed.



Reducibilities Oracle Reductions Example Properties

Oracle Reductions

Establishing an Oracle Reduction

Let L1 ⊆ Σ⋆

1 and let L2 ⊆ Σ⋆

2. The following process can be

used to prove that L1 �O L2:

1. Describe an algorithm that has a string in Σ⋆

1 as its input

and that uses a hypothetical “subroutine” that decides

membership in the language L2.

2. Prove that (if the subroutine for membership in L2 is

correct) this algorithm correctly decides membership in L1.

That is, it halts and accepts every input string µ ∈ L1 and it

halts and rejects every input string µ ∈ Σ⋆

1

3. Adding implementation details as needed, show that the

algorithm can be implemented as an oracle Turing

machine with an oracle for L2.

4. Note that this oracle Turing machine decides L1 —

establishing that L1 �O L2.



Reducibilities Oracle Reductions Example Properties

“Oracle Reductions” Comprise a Reducibility

Note that “oracle reduction” comprise a binary relation between

the set of languages and itself.

Claim #7: The set of oracle reductions forms a reducibility.

• This means that L �O L, for every language L ⊆ Σ⋆ (for

every alphabet Σ) and that, for all languages L1 ⊆ Σ⋆

1,

L2 ⊆ Σ⋆

2, and L3 ⊆ Σ⋆

3 (for alphabets Σ1, Σ2 and Σ3), if

L1 �O L2 and L2 �O L3 then L1 �O L3.

• A proof of Claim #7 is included in a supplemental

document for this lecture.



Reducibilities Oracle Reductions Example Properties

Closure of the Set of Decidable Languages

Claim #8: Let L1 ⊆ Σ⋆

1 and let L2 ⊆ Σ⋆

2 (for alphabets Σ1

and Σ2). If L1 �O L2 and L2 is decidable then L1 is decidable

too.

In other words, the set of decidable languages is closed under

oracle reductions.

• A proof of Claim #8 is also included in a supplemental

document for this lecture.



Reducibilities Oracle Reductions Example Properties

Closure of the Set of Decidable Languages

Corollary #9: Let L1 ⊆ Σ⋆

1 and let L2 ⊆ Σ⋆

2 (for alphabets Σ1

and Σ2). If L1 �O L2 and L1 is undecidable then L2 is

undecidable too.

• This result — and its consequences — is the main reason

why oracle reductions are part of this course.



Reducibilities Oracle Reductions Example Properties

Closure of the Set of Decidable Languages

Example, Continued:

Claim #10: The language NATM is undecidable.

Proof:

• It follows by Claim #6, above, that ATM �O NATM.

• It was shown in Lecture #13 that the language ATM is

undecidable.

• It now follows by Corollary #9, above, that the language

NATM is undecidable too.



Reducibilities Oracle Reductions Example Properties

Closure of the Set of Decidable Languages

Another process to prove that a language L ⊆ Σ
⋆ is

undecidable:

• Choose another language L̂ ⊆ Σ̂⋆ (over some alphabet Σ̂)

such that L̂ is undecidable.

• Prove that L̂ �O L.

• Conclude, by Corollary #9, above, that L must be

undecidable too.



Reducibilities Oracle Reductions Example Properties

Non-Closure of the Set of

Recognizable Languages

Claim #11: There exist languages L ⊆ Σ⋆ and L̂ ⊆ Σ̂⋆ (over

alphabets Σ and Σ̂) such that

• L is not recognizable,

• L̂ is recognizable, and

• L �O L̂.

The the set of recognizable languages is not closed under

oracle reductions.

• A supplemental document for this lecture includes a proof

of this claim.

• However — if you recall and understand material from

Lecture #13 and the beginning of Lecture #14 — you might

be able to prove this, on your own!



Reducibilities Oracle Reductions Example Properties

Non-Closure of the Set of

Recognizable Languages

• This implies that oracle reductions cannot be used to

prove that languages are unrecognizable.

• Another kind of a reduction — “many-one reductions” —

that can be used for this will be introduced in Lecture #15.



Reducibilities Oracle Reductions Example Properties

Oracle Reductions are Also Called

“Turing Reductions”

Oracle reductions also called a Turing reductions and the

notation �T is sometimes used instead of �O.

• While he did apparently did not call the relationships

between problems (that he was working with) “reductions”,

Turing’s work included an early version of the technique

introduced in this lecture.


	Reducibilities
	Oracle Reductions
	Example
	Properties

