Lecture #13: First Hard and Undecidable Languages
Lecture Presentation

Preliminaries: Listing Various Kinds of Infinite Sets

Countable Sets

Let N = {0,1,2,3,... } be the set of non-negative integers.

A set S is countable is there is a total function f : N — S that is surjective, that is “onto”: For
every element z of S there exists a non-negative integer n such that f(n) = «.

* Any non-empty finite set
S = {1‘1,1‘2,... ,wk}

is countable: Let f : N — N such that, for every non-negative integer n,

T, fo<n<k-1
fy =4
Tk ifn> k.

This is a well-defined total function from N to S. To see that it is surjective, let x € S.
Then x = z; for some integer i such that 1 < i < k,and f(i — 1) = x; = x. Since x was
arbitrarily chosen from S it follows that f is surjective (and S is countable.

As the examples to follow show, some (but not all) infinite sets are countable, as well.



Countability of the Set of Strings over an Alphabet

Consider an alphabet
Y ={o1,09,...,01}
« For every non-negative integer n, the number of strings in 3*, with length n, is £™.

« For every non-negative integer n, the number of strings in 3*, with length at most n is
n
. kn-{-l -1
i=0

— using a formula for the closed form of a geometric series that you have, ideally, seen
before.

« Consideramap p : ¥ — N such that p(o;) = i—1 for every integer i such that 1 < i < k.
Then

{j e N|j = p(«a) for a symbol o € ¥}
={jeN|0<j<k—1}={0,1,2,... . k—1}.

This can be extended to obtain a mapping p,, from the set of strings in ¥* with length n,
to N, by setting

pn(arag ... an) = ZP(%‘) S
i=1
= plar) - K"+ plag) - K"+ 4 plan—1) - k + plam).

Suppose, for example, that ¥ = {0, 1} = {01, 02} (where o1 = 0 and o5 = 1) — so that
p(0) = p(o1) = 0and p(1) = p(o2) = 1. If n = 3 then this defines a mapping p3) such
that p3(000) = 0, p3(001) = 1, p3(010) = 2, p3(011) = 3, p3(100) = 4, p3(101) = 5,
p3(110) = 6, and p3(111) = 7.

A Useful Property: In general, if |X| = k as above, and n € N then, for every integer i
such that 0 < ¢ < k™ — 1, there is exactly one string w € ¥* such that |w| = k and
pr(w) = i.



« Consider a mapping p : ¥* — N such the following properties are satisfied:

(i) A(N) =0.
(i) For every positive integer n, and for every string w € X* such that |w| = n,

pw) = p(n —1) + pn(w). (2)

Once again, consider the alphabet > = {0,1} (where o1 = 0 and o2 = 1) as above.
The values &(w), for every string w € ¥* such that |w| < 3, is as shown in the following
table.

w | n=lwl | pn=1) | pu(w) | pw)
A 0
0 1 1 0 1
1 1 1 1 2
00 2 3 0 3
01 2 3 1 4
10 2 3 2 5
11 2 3 3 6
000 | 3 7 0 7
001| 3 7 1 8
010 | 3 7 2 9
011| 3 7 3 10
100 | 3 7 4 11
101 3 7 5 12
110 | 3 7 6 13
111 | 3 7 7 14

Now, since £(3) = 15 one can also see that p(0000) = 15 = p(111) + 1.

It is possible to prove — for every alphabet > — that the function p : ¥* — N is an
bijective function: For every non-negative integer /¢, there is exactly one string w, € ¥*
such that p(wy) = £.

Continuing this example, one sees that that, for ¥ = {0,1}, wg = A\, w1 = 0, we = 1,
w3 = 00 — and the strings wy for listed, for increasing ¢, by continuing down the rows of
the table.

Since the function p'is injective, it has a well-defined inverse function, namely, a function
f + N — ¥* such that f(p(w) = w for every string w € ¥* and p(f(¢)) = ¢ for every
non-negative integer ¢. The function f is certainly surjective (since it is also “injective”)
— is needed to establish that — for every alphabet ¥ — the set ¥*, of all strings over %,
is a countable set.



What Does This “Listing” of Strings in X* Formalize?



Application for Turing Machines

Consider the set of Turing machines — as given by strings in the language TM C >3,.

One can show that the set of Turing machines is a countable set — and describe a way to list
all Turing machines in a sequence

M07M17M27M37' ..

(where each Turing machine could be listed more than once, but is always listed at least once),
as follows:



One can also show that the set of Turing machines with the form

M = (Q> .19, qo, Gaccept> Qreject)

such that ¥ = {0, 1} (thatis, |X| = 2) is a countable set — and describe a way to /ist all such
Turing machines P
M07M17M27M37 cee

(where every such Turing machine could be listed more than once, but is always listed at least
once), as follows:



What This Gives Us
Claim. There exists a language L C ¥*, where > = {0, 1}, such that L is unrecognizable.

Proof: By contradiction. Let us assume that every language L C X*, where ¥ = {0, 1}, is
recognizable. Then...



What Else Can We Establish Using This Idea?



Why is This Not Sufficient — Why Do We Need the Result in the
Notes, Too?



