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Goal for Today

• Introduction of Turing machines that receive encodings of

other Turing machines as inputs — along with strings over

the input alphabets for these machines — and simulate the

execution of these machines on these inputs.

• These are generally called universal Turing machines.

Unfortunately textbooks do not generally describe these in

much detail, but they are important!

Once again, students will be expected to understand concepts

introduced and results that are proved — but not the

(potentially confusing) details of the proofs that are presented.
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Universal Turing Machines

You may have heard it said that...

• It is possible to write a Java compiler as a Java program.

• It is possible to write a Python emulator as a Python

program.

You will learn today, that is possible to design a deterministic

Turing machine that is a “Turing machine emulator.”

A Turing machine that does this is called a universal Turing

machine.
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Universal Turing Machines: Complications

Proving the existence of a “universal Turing machine” MUTM is

complicated by several things:

• We have to figure out how a description (or encoding) of

some other Turing machine, M, can be included as part of

the input string that the “universal Turing machine” MUTM

has to process.

• The sizes of the input alphabet and tape alphabet for the

“encoded Turing machine” M can both be much larger than

MUTM’s tape alphabet. M might also have lots more states

than MUTM does.

So... this lecture has to start with details about “encodings,” so

that you can see how these problems can be overcome.
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Universal Turing Machines: Setting Things Up

Suppose, from now, on, that the “encoded (input) Turing

machine” is

M = (Q,Σ, Γ, δ,q0,qaccept,qreject)

and that the “encoded input string” is a string ω ∈ Σ⋆.

Assumption: q0 6= qaccept and q0 6= qreject.

• It is easy to modify any Turing machine, without changing

the language that this machine recognizes (or decides, if it

decides one), so that it satisfies this assumption.
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Universal Turing Machines: An Input Alphabet

Let

ΣTM = {(,),,,q,s, 0, 1,2,3,4,5,6,7,8,9,Y,N,L,R,#}.

ΣTM will be the input alphabet for the universal Turing machine

MUTM that is now being described.
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Universal Turing Machines:

What MUTM Receives as Input

MUTM should receive a string in Σ⋆

TM as input that has the form

(µ,ν)

where

• µ is a string in Σ⋆

TM encoding some deterministic Turing

machine

M = (Q,Σ, Γ, δ,q0,qaccept,qreject)

• ν is a string in Σ⋆

TM encoding some input string ω ∈ Σ⋆

for M
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Universal Turing Machines:

What MUTM Receives as Input

• Thus MUTM should start by checking whether its input

string starts with “(”, includes at least one “,” and ends

with “)”— rejecting it, if this is not the case.

• The encoding ν of M ’s input string does not include a “,”

— so the encoding µ of M includes all symbols between

the initial “(” and the final “,” in MUTM’s input string.
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Encoding M ’s States as Strings in Σ
⋆
TM

Renaming states if necessary, we may assume that

Q = {q0,q1, . . . ,qk ,qaccept,qreject}

for some integer k ≥ 0 — so that |Q| = k + 3.

• For 0 ≤ i ≤ k , state qi will be encoded by the string

e(qi) ∈ Σ⋆

TM consisting of the letter q followed by the

unpadded decimal representation of the number i — so

that e(q0) = “q0”, e(q1) = “q1”, e(q12) = “q12”, and so on.

• qaccept will be encoded by the string e(qaccept) = “qY”.

• qreject will be encoded by the string e(qreject) = “qN”.

• Note: The encodings of the start state, accept state and

reject state are all easy to recognize!
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Encoding M ’s Tape Symbols as Strings in Σ
⋆
TM

Let ℓ ∈ N such that 10ℓ−1 < |Γ| ≤ 10ℓ.

• ⊔ will be encoded by a string e(⊔) ∈ Σ⋆

TM starting wth s
and ending with ℓ 0’s — that is, ending with a padded

decimal representation of number 0 with length ℓ.

• Let |Σ| = h, so that 1 ≤ h ≤ |Γ| − 1. Choosing an ordering

for the input symbols in Σ we may assume that

Σ = {σ1, σ2, . . . , σh}.

• For 1 ≤ i ≤ h, σi will be encoded by the string e(σi) ∈ Σ⋆

TM

starting with s and ending with a padded decimal

representation of i — that is, a representation of i with

enough leading 0’s to make sure that it is a string with

length ℓ.



Universal Turing Machines Encoding a Turing Machine Encoding an Input String Simulation Conclusions

Encoding M ’s Tape Symbols as Strings in Σ
⋆
TM

• Choosing an ordering for the remaining tape symbols, we

may assume that the symbols in Γ that are different from ⊔
and not in Σ are symbols σh+1, σh+2, . . . , σm — where

m ≥ h, and 10ℓ−1 < |Γ| = m + 1 ≤ 10ℓ.

• For h + 1 ≤ i ≤ m, the symbol σi will also be encoded by

the string e(σi) starting with s and ending with the padded

decimal representation of the number i with length ℓ

• Note: This ensures that every symbol in Σ is encoded by

a string in Σ⋆

TM with the same length, ℓ+ 1.

• This will make it easier to use a tape of MUTM to represent

the contents of M ’s tape.

• It is also easy to recognize the encoding of ⊔ and to decide

whether an encoding of a tape symbol is an encoding of a

symbol in Σ.
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An Ongoing Example

The first example of a Turing machine provided in class —

which decides the language

L = {0n
1

n | n ≥ 0} ⊆ Σ⋆

over the alphabet Σ = {0, 1} — will be used as an ongoing

example. The state diagram for this machine (as usual, leaving

out the rejecting state and transitions to it) is as shown on the

following slide.
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An Ongoing Example

q0start q1 q2

q3

qA

0/X,R

0/0,R
Y/Y,R

1/Y,L

0/0,L
Y/Y,L

X/X,R

Y/Y,R

Y/Y,R ⊔/⊔,R

⊔/⊔,R
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An Ongoing Example

The states are already named as described above — with

k = 3. Now

• e(q0) = “q0”

• e(q1) = “q1”

• e(q2) = “q2”

• e(q3) = “q3”

• e(qaccept) = “qY”

• e(qreject) = “qR”
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An Ongoing Example

• Choosing an ordering for the symbols in Σ, let us set

σ1 = 0 and σ2 = 1.

• Choosing an ordering for the symbols in Γ that are not

blank and are not in Σ, let us set σ3 = X and σ4 = Y.

• A modified state diagram that uses these names for

symbols is as follows.
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Modified Example

q0start q1 q2

q3

qA

σ1/σ3,R

σ1/σ1,R
σ4/σ4,R

σ2/σ4,L

σ1/σ1,L
σ4/σ4,L

σ3/σ3,R

σ4/σ4,R

σ4/σ4,R σ0/σ0,R

σ0/σ0,R
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Modified Example

The transition table for this modified example Turing machine is

as follows. In this table qA is shown instead of qaccept, and qR is

shown instead of qreject, so that everything fits into the slide.

σ1 σ2 σ0 σ3 σ4

q0 (q1, σ3,R) (qR, σ2,R) (qA, σ0,R) (qR, σ3,R) (q3, σ4,R)
q1 (q1, σ1,R) (q2, σ4,L) (qR , σ0,R) (qR, σ3,R) (q1, σ4,R)
q2 (q2, σ1,L) (qR, σ2,R) (qR , σ0,R) (q0, σ3,R) (q2, σ4,L)
q3 (qR , σ1,R) (qR, σ2,R) (qA, σ0,R) (qR, σ3,R) (q3, σ4,R
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Encoding M ’s Tape Symbols as Strings in Σ
⋆
TM

Now, since |Γ| = 5, ℓ = 1 (since 100 < 5 ≤ 101), so that

• e(⊔) = e(σ0) = “s0”

• e(0) = e(σ1) = “s1”

• e(1) = e(σ2) = “s2”

• e(X) = e(σ3) = “s3”

• e(Y) = e(σ4) = “s4”
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Encoding Transitions as Strings in Σ
⋆
TM

Each transition of M now has the form δ(q, σ) = (r , τ,D)
where

• q ∈ {q0,q1,q2, . . . ,qk},

• σ ∈ Γ = {σ0, σ1, σ2, . . . , σm},

• r ∈ Q = {q0,q1,q2, . . . ,qk ,qaccept,qreject},

• τ ∈ Γ, and

• D ∈ {L,R}.

Since L,R ∈ ΣTM, each direction of motion can be encoded as a

string with length one.

The above transition can be encoded as the string

e(δ(q, σ)) ∈ Σ⋆

TM with the following form:

(e(q),e(σ),e(r),e(τ),e(D))
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Encoding Transitions as Strings in Σ
⋆
TM

• For example, the transition

δ(q0, σ1) = (q1, σ3,R)

in the ongoing example is encoded by the string

e(δ(q0, σ1)) = “(q0,s1,q1,s3,R)”

Exercise: Write down the encodings of at least a few more of

the transitions in the example Turing machine. This should now

be reasonably easy to do!
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Encoding theTransition Function as a String in Σ
⋆
TM

The entire transition function δ can now be encoded by a

string e(δ) ∈ Σ⋆

TM that

• starts with “(”

• continues with the encodings of all the transitions δ(q, σ),
separated by “,”’s and

• ends with “)”

The encodings of transitions should be listed in sorted order:

• If 0 ≤ i < j ≤ k then the encoding of δ(qi , σ) should be

listed before the encoding of δ(qj , τ) for all σ, τ ∈ Γ.

• For 0 ≤ i ≤ k , if 0 ≤ h < j ≤ m then the encoding of

δ(qi , σh) should be listed before the encoding of δ(qi , σj).
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Encoding the Transition Function as a String in Σ
⋆
TM

Note: If decimal representations of k and m are available (and

stored on separate tapes, making them easy to find), each of

the following things is easy to do using a deterministic Turing

machine:

• Decide whether a given string in Σ⋆

TM is a (valid) encoding

of some transition δ(q, σ).

• Decide whether a given string in Σ⋆

TM is a (valid)

encoding e(δ) of the transition function.

Suggested Exercises: Write down (reasonably high level)

descriptions of Turing machines that can do these things —

assuming (correctly) that it is easy to add one to the decimal

representation of number, use their decimal representations to

decide whether two numbers are equal, or whether one number

is less than or equal to the other.
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Encoding a Turing Machine as a String in Σ
⋆
TM

The Turing machine M = (Q,Σ, Γ, δ,q0,qaccept,qreject) can now

be encoded as a string e(M) with the form

(e(Q),e(Σ),e(Γ),e(δ))

where

• e(Q) is the unpadded decimal representation of the

integer k (such that |Q| = k + 3, as above);

• e(Σ) is the unpadded decimal representation of the size, h,

of Σ;

• e(Γ) is the unpadded decimal representation of the

integer m (such that |Γ| = m + 1, as above);

• e(δ) is the encoding of the transition function, δ, as

described above.
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Encoding a Turing Machine as a String in Σ
⋆
TM

This makes it easy for a deterministic Turing machine to decide

whether a string µ ∈ Σ⋆

TM is a valid encoding of a Turing

machine — and to set up tapes for a simulation, it is:

1. Reject µ if it does not start with “(”.

2. Reject µ if it does not continue with the unpadded decimal

representation of some number k ∈ N, followed by “,”.

Otherwise write the decimal representation of k onto the

beginning of another tape, so it is easy to find later.

3. Reject µ if it does not continue with the unpadded decimal

representation of some positive integer h, followed by “,”.

Otherwise write the decimal representation of h onto the

beginning of another tape, it is easy to find later, as well.
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Encoding a Turing Machine as a String in Σ
⋆
TM

4. Reject µ if it does not continue with the unpadded decimal

representation of a number m, such that h ≤ m, followed

by another “,”’. Otherwise write the decimal representation

of m onto another tape, so that it is also easy to find later

on.

5. Reject µ if it does not end with “)”. Otherwise set ξ ∈ Σ⋆

TM

to be the substring of µ starting immediately after the “,”

mentioned in step 4, and immediately before the final “)”.

6. Accept µ if ξ is a valid encoding of a transition function

(consistent with the numbers k , ℓ and m described above).

Otherwise reject µ.

The final step in this algorithm is tricky! Additional details about

this are included in the lecture presentation.
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Encoding an Input String as a String in Σ
⋆
TM

A string ν ∈ Σ⋆

TM is an encoding of a string

ω = τ1τ2 . . . τn ∈ Σ⋆

if and only if ν is the following string, “e(ω)”:

e(τ1)e(τ2) . . . e(τn)

Since the size, h of Σ is now available, it is easy to decide

whether a given string ν ∈ Σ⋆

TM has this form, for some string

ω ∈ Σ⋆.
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Encoding an Input String as a String in Σ
⋆
TM

MUTM should reject its input string if it does not have the form

(µ, ν) where µ is an encoding of some deterministic Turing

machine

M = (Q,Σ, Γ, δ,q0,qaccept,qreject)

and where ν is an encoding of some string ω ∈ Σ⋆. Otherwise

MUTM should simulate the execution of M on input ω, as

described next.
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Completing the Initialization

Three more tapes will be used:

• A tape, “Tape A,” that stores the encoding of the current

state of M. This should be initialized to store the encoding

q0 of q0.

• A tape, “Tape B,” that represents the non-blank part of M ’s

tape. This should be initialized to store the string #ν, where

ν is the encoding of the input string ω that is part of MUTM’s

input. The tape head should be moved back to the leftmost

symbol in ν.

Note: The only # on this tape is the one on the leftmost

cell.

• A tape, “Tape C, can be used to store values needed for

calculations. This can be left blank to start.
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What MUTM Does

MUTM now simulates M, one move at a time, in a series of

rounds. At the beginning of each round,

• Tape A stores the current state of M.

• Tape B stores an encoding of the non-blank part of M ’s

tape, with the tape head resting on the leftmost symbol in

the encoding of the symbol (in Σ) that is currently visible

on M ’s tape.

• The input tape has not been changed, so it still includes an

encoding of the transition function for M.

Note: All these properties initially hold.
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What MUTM Does

MUTM should continue as follows.

1. Sweep over the encoding of the transition function, δ, until

the beginning of the encoding of transitions for the current

state, q, are found — using Tape A to check for this.

2. Continue to sweep over the encoding of the transition

function, δ, until the transition for q and the symbol σ,

currently visible on M ’s tape, is found — using tape B to

check for this.

Suppose that the transition found is

δ(q, σ) = (r , τ,D)

where r ∈ Q, τ ∈ Γ, and D ∈ {L,R}.
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What MUTM Does

3. If r is qaccept then MUTM should accept. If r is qreject then

MUTM should reject. Otherwise, MUTM should continue with

the next step.

4. Replace the encoding of q with the encoding of r on

Tape A.

5. Replace the (currently visible) encoding of σ with an

encoding of τ on Tape B, moving the tape head back to the

first symbol in this encoding of τ .

6. If D = L then move the tape head for Tape B to the

beginning of the encoding of a symbol that is immediately

to the left of the encoding of τ — unless # appears

immediately to the left. Move the tape head back to the

first symbol in the encoding of τ , in that case.
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What MUTM Does

7. If D = R then move the tape head for Tape B to the cell

immediately to the right of the last symbol in the encoding

of τ .

If another s is now visible, leave the tape head where it is.

Otherwise, ⊔ is now visible. Replace this (and other ⊔’s

immediately to right with a copy of the encoding of ⊔ and

move the tape head back to the beginning of this encoding.

I hope it is not hard to see that another move of M has been

simulated — and that the properties that should hold at the

beginning of each round hold, once again.
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Conclusions

Claim #1: If the universal Turing machine MUTM that has now

been described is executed with an input string µ ∈ Σ⋆

TM, then:

• If µ does not encode a Turing machine M (with input

alphabet Σ) and string ω ∈ Σ⋆ at all, then MUTM rejects µ.

• If µ encodes a Turing machine M and string ω ∈ Σ⋆ such

that M accepts ω then MUTM accepts µ.

• If µ encodes a Turing machine M and string ω ∈ Σ⋆ such

that M rejects ω then MUTM rejects µ.

• If µ encodes a Turing machine M and string ω ∈ Σ⋆ such

that M loops on ω then MUTM loops on µ.
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Conclusions

The most expensive of the simulation is “discovering the right

transition to apply.” With a bit of work one can show that the

number of steps needed for this is at most linear in the length of

the encoding of the transition function — which is at most the

length of the encoding of M.

This can be used to prove the following.

Claim #2: If MUTM is executed on a string ξ ∈ Σ⋆

TM that encodes

a Turing machine M and string ω ∈ Σ⋆, then the number of

steps used by MUTM to simulate the first t steps of M on input ω
is at most linear in the product of t and the length of the input

string ξ.
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Conclusions

The important result that has now been proved is as follows:

Claim #3: For every alphabet Σ, the language

ATM ⊆ Σ⋆

TM

consisting of strings µ encoding Turing machines M with some

input alphabet Σ, and strings ω ∈ Σ⋆, such that M accepts ω, is

Turing-recognizable.

By the end of the course, you will see a proof that this language

is provably not Turing-decidable!
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