
Lecture #12: Universal Turing Machines

Lecture Presentation

A First Problem To Be Solved

Function To Be Computed

Let Σb = {0,1}, let Σp = {0,1,#} = Σb ∪ {#}, and let Lpair ⊆ Σ⋆
p be the set of strings in Σ⋆

p

with the form
µ#ν (1)

where µ, ν ∈ Lbin, for the language Lbin ⊆ {0,1}⋆ introduced in the lecture presentation for
Lecture #10 —so that µ and ν are both unpadded binary representations of non-negative
integers. Let fadd : Σ⋆

p → Σ⋆
b be defined as follows:

• If ω = µ#ν ∈ Lpair so that, in particular, µ and ν are unpadded binary representations of
non-negative integers n and m, then fadd(ω) is the unpadded binary representation of
their sum, n+m.

• On the other hand, if ω ∈ Σ⋆
p and ω /∈ Lpair, then fadd(ω) = λ.

High-Level Description

Consider an input string ω ∈ Σ⋆
p. As noted above if ω /∈ Lbin then fbin(ω) = λ, so that a Turing

machine computing fadd when given µ as input.

Suppose, instead, that ω ∈ Lbin — so that ω = µ#ν for a pair of strings µ and ν, which are
unpadded representations of a pair of integers n and m, respectively. If we initialize a pair
of integers k and ℓ to be n and m, respectively, and —while ℓ is positive — add one to k and
subtract one from ℓ then, when this process ends, k = n+m, so fadd(ω) is the unpadded binary
representation of ω — and this string should be returned as output when a Turing machine,
computing fadd, is executed with input ω.

Another description of this algorithm — which refers directory to the unpadded binary repre-
sentations of the integers named above — is shown in Figure 1, on the next page. This refers
to the function f+1 : Σ⋆

1 → Σ⋆
2 (for Σ1 = Σ2 = {0,1}) considered above, and a function

f−1 : Σ
⋆
1 → Σ⋆

2 which is as follows:

1



On input ω ∈ Σ⋆
1:

1. if (ω ∈ Lpair) {
// Let µ, ν ∈ {0,1}⋆ such that ω = µ#ν

2. µ̂ := µ

3. ν̂ := ν

4. while (ν̂ ̸= 0) {
5. µ̂ := f+1(µ̂)

6. ν̂ := f−1(ν̂)

}
7. return µ̂

} else {
8. return λ

}

Figure 1: A “High-Level” Description of a Multi-Tape Turing Machine to Compute f−1

• If ω ∈ Lbin and ω is the unpadded binary representation of a positive integer n, then
f−1(ω) is the unpadded binary representation of n− 1.

• If either ω = 0 (so that ω ∈ Lbin and ω is the unpadded binary representation of 0) or
ω /∈ Lbin then f−1(ω) = λ.

Sketching a Proof of Correctness





Implementation-Level Algorithm

When designing a multi-Tape Turing machine, we should state how many tapes are used, and
how each tape is used — including describing the information that will be stored on each tape,
and how that information will be represented. It is not necessary (or, generally, helpful) to try
to minimize the number of tapes used; you should probably focus on keeping things simple,
instead.

For example, this high-level algorithm could be implemented, without too much trouble, us-
ing a two-tape Turing machine — but a three-tape Turing machine is easier to describe and
understand — so that will be described instead.

It is also, generally, not necessary or helpful to try to minimize the number of steps used
during an execution: If an implementation uses (a few) more steps than necessary, but this
makes the implementation easier to describe and understand, then the “slower”, but simpler
implementation is probably the better choice.

• Tape #1 will be used to store the input string.

• If the test at line 1 is passed, so that the steps at lines 2 – 7 are reached and executed,
then tape #2 will be used to store the string ν̂.

• If the test at line 1 is passed, so that the steps at lines 2 – 7 are reached and executed,
then tape #3 will be used to store the string µ̂ — so that this tape will store fadd(ω) when
the execution, on input ω, ends.

Implementing the Test at Line 1



Implementing the Step at Line 2

Implementing the Step at Line 3

Implementing the Test at Line 4



Implementing the Step at Line 5

Implementing the Step at Line 6

Implementing Everything Else



The “Formal Description” is Too Big. What Can We Do?

What about “Proving Correctness”?



More About Universal Turing Machines

The preparatory reading for Lecture #12 introduced an alphabet, ΣTM, that was used to define
three languages:

• TM ⊆ Σ⋆
TM is the language of valid encodings of Turing machines.1

• TM+I ⊆ Σ⋆
TM is the language of encodings of Turing machines and input strings for those

Turing machines.

• ATM ⊆ TM+I ⊆ Σ⋆
TM is the language of encodings of Turing machines and input strings

that are accepted by the encoded Turing machine.

As discussed in the readings, the languages TM and TM+I are both decidable, and the lan-
guage ATM is recognizable.

More About This

1We restricted attention, here, to Turing machines whose start states are different from both of their halting
states. As discussed in the lecture notes, this restriction does not changes of languages that can be recognized, or
decided, by Turing machines.





More about the Church-Turing Thesis



Concluding Remarks


