
Lecture #11: Multi-Tape Turing Machines, Nondeterministic

Turing Machines, and the Church-Turing Thesis

Nondeterministic Turing Machines

Lecture #11 introduced a significant variant of Turing machine — a multi-tape Turing machine

— that considerably simplifies the job of showing that languages are Turing-recognizable or

Turing-decidable, or that functions are Turing-computable. Simulations were described that

could be used to show that the sets of Turing-recognizable and Turing-decidable languages,

and Turing-computable functions, would not be changed if these were defined using multi-tape

Turing machines instead of using standard (one-tape) Turing machines.

This document introduces yet another variant of a Turing machine that accepts, rejects or

loops on strings (so that it recognizes a language, and might also decide one), namely, a

nondeterministic Turing machine. Simulations are sketched that can be used to prove that

the sets of Turing-recognizable and Turing-decidable languages are (once again) unchanged if

nondeterministic Turing machines are used instead of standard “deterministic” Turing machines

when these are defined.

Definitions

A nondeterministic Turing machine is the same as a regular Turing machine except that there

can be zero, one, or many moves that might be possible at any time — so that the transition

function is now a (partial) function

δ : Q× Γ → P(Q× Γ× {L,R}).

• If q ∈ Q\{qaccept, qreject} then δ(q, σ) should be defined for every symbol σ ∈ Γ — where

(as usual) qaccept and qreject are the Turing machine’s accept and reject state, respectively.

• If q ∈ {qaccept, qreject} then δ(q, σ) should not be defined for any symbol σ ∈ Γ.

This is (essentially) the same as the change made to the definition of a DFA in order to define

an NFA.
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The initial configuration of a Turing machine, for an input string ω ∈ Σ⋆, is the same as for a

standard (deterministic) Turing machine.

A computation of a nondeterministic Turing machine M on an input string ω ∈ Σ⋆ can be

represented as a tree:

• The start configuration for ω is at the root.

• Each path down the tree shows one of the possible sequence of configurations that the

machine can have when processing ω.

A nondeterministic Turing machine M . . .

• accepts ω if at least one accepting configuration appears on the computation tree

for ω.

• rejects ω if the computation tree for ω is finite and there is no accepting configuration

on it.

• loops on ω otherwise — that is, when the computation tree is infinite and does not

include any accepting configuration.

The definition of a Turing machine’s recognizing a language (which depends on the definitions

of “accepting”, “rejecting” and “looping on” a string) is (otherwise) unchanged. However, the

definition of a nondeterministic Turing machine’s “deciding” a language is somewhat different:

Let us say that a nondeterministic Turing machine M is a decider if all branches of the com-

putation tree for M and an input ω ∈ Σ⋆ are finite — so that the entire computation tree for ω is

finite — for every input string ω ∈ Σ⋆. We will say that a nondeterministic Turing machine M
decides1 a language L ⊆ Σ⋆ if and only if

• M is a decider, and

• L is the language of M — that is, the set of strings in Σ⋆ that M accepts.

An Example

Suppose Σ = {a,b} and let

L = {ωω | ω ∈ Σ⋆}.

Then a nondeterministic Turing machine that recognizes this language, using a tape alphabet

Γ = Σ ∪ {⊔} ∪ {#,X} = {a,b,#,X,⊔}

1One could also define “deciding” quite differently: One could simply say that a nondeterministic Turing machine

“decides” a language L ⊆ Σ
⋆ if it accepts every string in L and rejects every string in Σ

⋆ \L. This definition would

be different — some Turing machines would “decide” languages according to this definition, when they would not

“decide” languages under the definition given first. However, the set of “Turing-decidable” languages” would still not

be changed, if this other definition of “decision” was used instead.
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is as follows. On input µ ∈ Σ⋆:

1. If the symbol that is visible on the tape is a then the machine should replace this with #,

moving right, and changing to state qa.

If the symbol that is visible on the tape is b then the machine should replace this with #,

moving right, and then changing to state qb.

If the symbol that is visible is ⊔ then the machine should move left without replacing this,

and accept .

Thus

δ(q0,a) = {(qa,#,R)}, δ(q0,b) = {(qb,#,R)}, and δ(q0,⊔) = {(qaccept,⊔,L)}.

A state diagram for this part of the machine is as follows.

q0start

qa

qbqA

a/#,R

b/#,R

⊔/⊔,L

2. If the machine is in state qa (so that the input string began with an a) and a b is visible

then the machine should sweep past it to the right without changing it and remain in

state qa (so that this step will be repeated).

If the machine is in state qa and ⊔ is visible then the machine should sweep past it to the

right, without changing it, and reject .

On the other hand, if the machine is in state qa and an a is visible then the machine can

• either guess that this is the first symbol in the second half of the string — replacing

this a with an X, moving left, and changing to state qL,

• or guess that this is not the first symbol in the second half — leaving this a un-

changed, moving right past it, and remaining in state qa.

3. Similarly, if the machine is in state qb (so that the input string began with a b) and an a is

visible then the machine should sweep past it to the right without changing it and remain

in state qb (so that this step will be repeated).

If the machine is in state qb and ⊔ is visible then the machine should sweep past it to the

right, without changing it, and reject .

On the other hand, if the machine is in state qb and a b is visible then the machine can
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• either guess that this is the first symbol in the second half of the string — replacing

this b with an X, moving left, and changing to state qL,

• or guess that this is not the first symbol in the second half — leaving this b un-

changed, moving right past it, and remaining in state qb.

4. When the machine is in state qL it should sweep left over all symbols except #, without

replacing them, moving left. When # is seen then the machine should move right past it,

without replacing it, and change to state q1.

The state diagram for the part of the machine that has now been described is as follows.

qL

qa

qb

q1

a/a,R
b/b,R

a/a,R
b/b,R

a/a,L
b/b,L
X/X,L
⊔/⊔,L

a/X,L

b/X,L

#/#,R

Note: δ(qa,a) = {(qa,a,R), (qL,X,L)}.

5. Finally, the algorithm should repeatedly do the following.

(a) Sweep right over any X’s without replacing them. If a ⊔ is seen before an a or b

then accept . Otherwise replace the leftmost remaining a or b with X, using the finite

control to remember which of these was replaced;

(b) Sweep right over remaining a’s and b’s, without replacing them, until an X is seen.

(c) Sweep right over remaining X’s without replacing them until either an a or b is seen

— reject if ⊔ is seen instead. If an a or b is seen and this is different from the symbol

that got replaced then reject . Otherwise, replace it with X and move left.

(d) Continue moving left past symbols without replacing them, until a # is seen. Move

back to the right and return to step 5(a).
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The state diagram for this part of the machine is as follows.

q1

ra

rbqA

sa

sb

t

a/a,R
b/b,R

a/a,R
b/b,R

a/a,L
b/b,L
X/X,L
⊔/⊔,L⊔/⊔,L

X/X,R

a/X,R

b/X,R

X/X,R

X/X,R

X/X,R

X/X,R

a/X,L

b/X,L

#/#,R

The computation tree for the string abab begins as follows:

#bq
a
ab

#q
L
bXb #baq

a
b

#q
a
bab

q
0
abab

The right branch of this computation tree continues as follows:

#baqab ⊢ #babqa

⊢ #bab ⊔ qreject.
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On the other hand, the left branch of this computation tree continues as follows.

#qLbXb ⊢ qL#bXb ⊢ #q1bXb ⊢ #XrbXb

⊢ #XXsbb ⊢ #XtXX ⊢ #tXXX

⊢ t#XXX ⊢ #q1XXX ⊢ #Xq1XX

⊢ #XXq1X ⊢ #XXXq1 ⊢ #XXqacceptX.

This this branch of the computation tree does include an accepting configuration, so M ac-

cepts the input string abab.

It can be shown — with a bit of work — that this nondeterministic Turing machine is a decider,

and that it decides the above language L.

One Simulation

Claim 1. Let L ⊆ Σ⋆ (for an alphabet Σ).

(a) If L is Turing-recognizable then there exists a nondeterministic Turing machine whose

language is L.

(b) If L is Turing-decidable then there exists a nondeterministic Turing machine that decides L.

Proof. Let

M = (Q,Σ,Γ, δ, q0, qaccept, qreject)

be a deterministic Turing machine M that recognizes a language L ⊆ Σ⋆. It suffices to note

that if we set

M̂ = (Q,Σ,Γ, δ̂, q0, qaccept, qreject)

to be a nondeterministic Turing machine with the same set Q of states, tape alphabet Γ, and

with the same start state, accept state and reject state, then it suffices to define δ̂ by setting

δ̂(q, σ) = {δ(q, σ)}

for each state q ∈ Q \ {qaccept, qreject} and every symbol σ ∈ Γ. The state diagrams for M

and M̂ will look exactly the same. It also easy proved, then (by induction on |ω|) that

δ̂⋆(q0, ω) = {δ⋆(q0, ω)}

for every string ω ∈ Σ⋆. Since M and M̂ have the same start state, accept state, and reject

state, it follows from this that L(M̂ ) = L(M) = L. Furthermore, M̂ decides L if M does —

as needed to establish the claim.
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Another Simulation

Claim 2. Let L ⊆ Σ⋆ (for an alphabet Σ).

(a) If there exists a nondeterministic Turing machine whose language is L then L is Turing-

recognizable.

(b) If there exists a nondeterministic Turing machine that decides L then L is Turing-decidable.

Sketch of Proof. Let L ⊆ Σ⋆, for an alphabet Σ⋆. Suppose that there exists a nondeterministic

Turing machine

M = (Q,Σ,Γ, δ, q0, qaccept, qreject)

whose language is L. In order to prove part (a) of the claim it is necessary, and sufficient, to

describe a 2-tape (deterministic) Turing machine

M̂ = (Q̂,Σ, Γ̂, δ̂, q̂0, q̂accept, q̂reject),

whose language is L, as well.

A simulation will be given to show such a Turing machine, M̂ , exists: M̂ will simulate all pos-

sible executions of M on an input string ω ∈ Σ⋆ by performing a search over M ’s computation

tree on this input string.

Representation of Information: In order to do this, M̂ will need to represent configurations

of M .

M̂ ’s tape alphabet, Γ̂, will therefore include

• All the symbols in M ’s tape alphabet, Γ;

• all the symbols in M ’s set Q of states — and it will be assumed that Q ∩ Γ = ∅;

• one more symbol, ♠, that is not in either Γ or Q.

M̂ will keep the following information on its tapes.

• Tape #1: This initially stores the input string ω ∈ Σ⋆. During this simulation it will store

a sequence of configurations of M , separated by (and ending with) ♠ — and with this

tape starting with two ♠’s, so that the left end of the tape can be detected.

• Tape #2: This is a “work tape” that will be used to update tape #1.

How Not To Do This: One way to try to simulate M ’s behaviour is to perform a depth-first

search — simulating computations down branches of the computation tree until each ends.

Unfortunately this will not always work if M is not a “decider” — because it is possible that an

infinite branch might get searched — and M̂ will end up “looping on ω” — even though there
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is another finite branch in M ’s computation tree that ends with an accepting configuration —

so that M accepts ω, instead.

How To Do This: Use breadth-first search instead: After t stages of this simulation all the

configurations reachable from the start configuration by making t moves of M will be shown

on Tape #1. Since there are only finitely many configurations that are reachable after t moves

of M , for any non-negative integer t, this guarantees that an accepting configuration will be

discovered, so that the input string will be accepted, whenever it belongs to the language of M .

So — while the simulation process — Tape #1 will store the sequence of all configurations that

are at level t in the computation tree for the input string, for some non-negative integer t.

Initialization: Since M̂ ’s Tape #1 should store the initial configuration when the simulation of

the first step is to begin, and since it initially stores the input string, it (only) needs to add three

symbols — “♠♠q0” to the beginning of the non-blank string stored on the tape, and to add one

symbol “♠” to the end of it.

The initialization phase should, therefore, write the above three symbols on the leftmost cells

of Tape #1 and continue to sweep right, as long as non-blank symbols are visible, shifting the

non-blank (initial) contents of the tape three symbols to the right — using the finite control to

remember the last three symbols seen (so that they can be written back onto the tape when

needed) — adding one more non-blank symbol, “♠”, at the end. The tape head should then

sweep back to the leftmost cell of the tape without changing the contents of the tape. Since the

only place on the tape where two copies of “♠” are next to each other is at the first two cells of

the tape, the leftmost cell of the tape is easily identified.

The initialization phase should end with a change of state, so that M̂ ’s finite control also stores

the information that M is in its start state, q0, when its first step is about to begin.

Simulation of a Step of M : The simulation of a step should begin with the contents of M̂ ’s

Tape #1 being copied onto Tape #2, erasing all but the first two symbols, “♠♠”, that are on the

first tape — with both tape heads moved back to the third cell on each tape.

Each of the configurations on Tape #2 should now be used to produce zero or more configu-

rations that will be added onto the end of Tape #1. This process will (almost certainly) begin

with a sweep to right over the representation of the configuration (which is now on Tape #2) to

determine the state, q ∈ Q that it includes, and the symbol, σ ∈ Γ, that would be visible on the

tape at this point — which can be stored using M̂ ’s finite control. M̂ ’s tape head, on Tape #2,

could then be moved back to the beginning of the representation of this configuration.

Recall that we are simulating a single fixed nondeterministic Turing machine M — so that M ’s

possible moves are fixed, and can be used to define M̂ ’s “finite control” (set of states and tran-

sition function). Thus M̂ can include a fixed “submachine” for each state q ∈ Q\{qaccept, qreject}
and for each symbol σ ∈ Γ whose transition δ(q, σ) should be applied. Furthermore, the sub-

machine for q and σ will include a fixed (and finite) number of simpler submachines — one for

each 3-tuple (r, τ,D) (for r ∈ Q, τ ∈ Γ and D ∈ {L,R}) that is in the set δ(q, σ).
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Exercise: Figure out what these submachines will do! Consider each of the following cases.

(a) δ(q, σ) includes a 3-tuple (r, τ,L) for r ∈ Q and τ ∈ Γ.

(b) δ(q, σ) includes a 3-tuple (r, τ,R) for r ∈ Q and τ ∈ Γ.

Note that if the transition δ(q, σ) is now being used then |δ(q, σ)| configurations will be added

to the end of Tape #1 to replace the configuration on Tape #2 that is now being processed.

During this process, rejecting configurations should simply be erased from Tape #2’s tape as

they are discovered.

If an accepting configuration is ever discovered then M̂ should accept .

On the other hand, if this has not happened and — at the end of a stage — Tape #1’s non-blank

portion only stores

♠♠

then M̂ should reject — because the computation tree was finite, has now been completely

searched, and it did not include an accepting configuration.

Otherwise, after all the transitions on Tape #2 have been processed, this tape should be erased

(and the tape head should be moved back to the left). M̂ ’ should change state to store M ’s

current state, so that the simulation of the next step can begin.

Now, since M is a fixed nondeterministic Turing machine there exists a positive constant c
(depending only on M ) such that

|δ(q, σ)| ≤ c

for every state q ∈ Q and symbol σ ∈ Γ. This can be used to prove the following (Parts (a)

and (b) can be established by induction on t; part (c) is a consequence of parts (a) and (b).)

Claim: Let t ≥ 0. Then, after t stages of the simulation of M , the following

properties are satisfied.

(a) The length of each substring representing a configuration of M , on Tape #1,

has length at most linear in max(n, t) if the input string ω ∈ Σ⋆ has length n.

(b) The number of configurations represented on Tape #1 is at most ct.

(c) The length of the non-blank portion of Tape #1 is at most linear in max(n, t)× ct.

This claim can then be used to establish the following one.

Claim: The number of steps used by M̂ to carry out the tth stage of the simulation

is at most linear in max(n, t)× ct.
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How To Prove This: After considering the simulation in a bit more detail you should be able

to confirm that the number of steps used by M̂ to generate the non-blank portion of Tape #1

is only linear in the length of the non-blank portion of the tape that has been generated. The

claim is a reasonably straightforward consequence of this.

Now let ω ∈ Σ⋆ such that M accepts ω. Then the computation tree for ω includes an accepting

configuration at some level t. It follows by the above that this configuration will be discovered

(if M has not already been accepted before this) during the tth simulation of a “step” of M , and

that M̂ will also accept ω.

Suppose that M rejects ω instead: Then the computation tree for ω is finite (so that it as some

finite depth, t) and does not include any accepting configuration. After the simulation of t + 1
“steps” of M — which will require only a finite number of moves of M̂ , by the above claims —

it will be discovered that M̂ ’s Tape #1 does not store any configurations at all — and M̂ will

also reject ω at this point.

Finally, suppose that M loops on ω — so that the computation tree for ω is infinite and does

not include any accepting configurations. Then M̂ will never accept ω (since it must discover

an accepting configuration in order to do so) and its execution on ω will never halt, since M ’s

configuration tree has infinitely many levels (and M̂ can only reject ω after discovering that its

computation tree has finite depth). Thus M̂ loops on ω too.

It follows by the above that L(M̂) = L(M) = L, as needed to establish part (a) of the claim.

Furthermore, if M decides L then M̂ decides L too, as needed to establish part (b).

Nondeterministic Multi-Tape Turing Machines

It is possible to define nondeterministic k-tape Turing machines too. It should (probably) not

be hard for you to imagine how.

The simulation of a k-tape Turing machine by a regular one can be modified — in a reasonably

minor way — to produce a simulation of a k-tape nondeterministic Turing machine by a one-

tape nondeterministic Turing machine.

Claim 2 can then be applied, to establish that the set of Turing-recognizable languages, and

Turing-decidable languages, are not changed if we use nondeterministic multi-tape Turing ma-

chines to define these sets.

10


