
Lecture #11: Multi-Tape Turing Machines, Nondeterministic

Turing Machines, and the Church-Turing Thesis

Multi-Tape Turing Machines That Compute Functions

Let Σ1 and Σ2 be alphabets — finite and nonempty sets — and suppose that ⊔ does not

belong to either Σ1 or Σ2. Consider a (partial or total) function f : Σ⋆
1
→ Σ⋆

2
. If k is a positive

integer then a k-tape Turing machine M , that computes the function f : Σ
⋆

1
→ Σ

⋆

2
can

be defined. Formally,

M = (Q,Σ1,Σ2,Γ, δ, q0, qhalt)

where Σ1 and Σ2 are as described above and where Q, Γ, δ, q0 and qhalt satisfy the following

conditions.

• M has a finite set Q of states just as a (1-tape) Turing machine that computes a function

— so that Q includes a start state q0 and a halt state qhalt. We will now require that

q0 6= qhalt. As argued below, this does not significantly limit the computational power of

these machines.

• M ’s tape alphabet is a finite set Γ such that

Σ1 ∪ Σ2 ∪ {⊔} ⊆ Γ,

just as for a (1-tape) Turing machine that computes a function f : Σ⋆
1
→ Σ⋆

2
. As before,

we will require that Q ∩ Γ = ∅.

• As for k-tape Turing machines that recognize or decide languages, the transition func-

tion is a partial function

δ : Q× Γk → Q× (Γ× {L,R,S})k.

We will require that δ(q, σ1, σ2, . . . , σk) is defined for all σ1, σ2, . . . , σk ∈ Γ whenever

q ∈ Q and q 6= qhalt, and we will require that δ(qhalt, σ1, σ2, . . . , σk) is undefined for all

σ1, σ2, . . . , σk ∈ Γ.

1



• Configurations are as described for k-tape Turing machines that recognize languages,

and these are represented as strings of symbols over the alphabet Q∪Γ∪{♯}, where ♯ is

a symbol such that ♯ /∈ Q∪Γ. Transition functions are applied to (non-halting) transitions

in the same way as they are for k-tape Turing machines that recognize languages, as

well.

• The initial configuration for an input string ω ∈ Σ⋆
1

is the same as for multi-tape Turing

machines that recognize languages: ω is written on the leftmost cells of the first tape,

with an infinite number of copies of ⊔ to its right. All other tapes are filled with ⊔’s, and

all tape heads are located at the leftmost cells of their tapes. The Turing machine is in

its start state, so that the initial configuration for ω could be the string

q0ω♯q0♯q0♯ . . . ♯q0

consisting of q0ω, followed by k − 1 copies of ♯q0.

• If f(ω) is defined, for an input string ω ∈ Σ⋆
1

then, if µ = f(ω) ∈ Σ⋆
2
, then M ’s computa-

tion on ω should end in a halting state, where the machine is in state qhalt and

– for 1 ≤ i ≤ k − 1, the ith tape is filled with blanks, with the tape head resting at the

leftmost cell of the tape, and

– µ = f(ω) is stored at the leftmost cells of the kth tape, with an infinite number of ⊔’s

to the right, and with the tape head resting at the leftmost cell of the tape as well.

Thus this final configuration would be represented by the string

qhalt♯qhalt♯ . . . ♯qhaltµ

beginning with k − 1 copies of the string qhalt♯, and ending with the string qhaltµ.

Note that the output is written on the last tape — not the first.

• If f(ω) is not defined, for an input string ω ∈ Σ⋆
1
, then M loops on input ω.

Since these Turing machines are quite similar to k-tape Turing machines that recognize lan-

guages, an example will not be given here. With that noted, the following claims can be proved.

Claim #1: Let Σ1 and Σ2 be alphabets (such that ⊔ /∈ Σ1 and ⊔ /∈ Σ2), let f : Σ⋆
1
→ Σ⋆

2
,

and let k be a positive integer. If there exists a (1-tape) Turing machine M1 that computes the

function f then there exists a k-tape Turing machine M2 that computes the function f as well.

Sketch of Proof. Suppose, first that M1’s start state, q0, is equal to its halt state, qhalt. Then M1

is easily modified, so that this is not the case, by adding a new start state, q̂0 — and extending

M1’s transition function, δ, by setting δ(q̂0, σ) to be (q0, σ,L) for every symbol σ in M ’s tape

2



alphabet: This simply adds one initial move that goes to M1’s “original” start configuration, so

that the function computed by the machine has not been changed. We may therefore assume

that M1’s halt state is different from its start state.

If k = 1 then it suffices to set M2 to be M1. Suppose, therefore, that k ≥ 2.

Since M2’s output should be on its kth tape, instead of the first, it is not sufficient for M2 to

simply simulate M1, ignoring all but its first tape. Instead one more symbol should be added

to M2’s tape alphabet, (that is, M2’s tape alphabet should consist of M1’s tape alphabet, Γ1,

along with one new symbol, X, such that X /∈ Γ1). M2 should then carry out the following

process.

1. Write a copy of the input ω, on the kth tape. Then erase the first tape (so that it is filled

with ⊔’s) and move the tape heads for the first and kth tapes back to their initial positions

— without changing tapes 2, 3, . . . , k−1 at all. (The new symbol, X, can be used to mark

the leftmost cell at the beginning of this step, in order to make this easy to do.)

2. Simulate M1 — using the kth tape instead of the first tape, and ignoring all the others.

Halt if (and when) M1 would.

The first stage of this process can certainly be carried out using a number of steps that is

at most linear in the length of the input string. In the second step, only one step of M2 is

needed to simulate each step of M1 — and, since the kth tape will store any output that has

been generated, it is easily proved that M2 computes the same function as M1 does, as

required.

Claim #2: Let Σ1 and Σ2 be alphabets (such that ⊔ /∈ Σ1 and ⊔ /∈ Σ2), let f : Σ⋆
1
→ Σ⋆

2
, and

let k be a positive integer. If there exists a k-tape Turing machine M1 that computes f then

there exists a (1-tape) Turing machine M2 that computes f as well.

Sketch of Proof. If k = 1 then it suffices to set M2 to be M1. Suppose, therefore, that k ≥ 2.

Consider the simulation of a k-tape Turing machine that was described in the lecture notes to

prove Claim #2 (so that it includes symbols with 2k “tracks” as described in the notes).

• Suppose that M2’s tape alphabet is as described in that proof and that M2’s tape is

used to represent the contents of M1’s tapes, and the location of M1’s tape heads, as

described in the notes, as well.

• A simulation will have the same initialization phase and step-by-step simulation stage

— except that M2 will not halt at the same time as M1 — can be used.

• A new cleanup stage is now required: When M1 would halt, M2 includes a representa-

tion of M1’s tapes, with the first k − 1 tapes filled with ⊔’s and with the desired output,

3



f(ω) on the kth tape — and with the special symbol $ at the leftmost cell. During the

cleanup stage M2’s tape should be changed, so that it simply stores f(ω), with ⊔’s to

the right of this, and with the tape head at the leftmost cell of the tape, instead.

The details of this are similar to the details of the initialization phase — and completing

these is left as an exercise.

A consideration of the description of a “k-tape Turing machine that computes a function” should

now be sufficient to confirm that M2 is a (one-tape) Turing machine that computes the same

function as M1, as needed to prove the claim.

Having multi-tape Turing machines that recognize (or decide) languages and that compute

functions simplify Turing machine design, because it makes it easier to imagine, and imple-

ment, algorithms that use other algorithms as subroutines. If time allows this will be consid-

ered when the tutorial exercise for this topic is completed.

4


