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Goal for Today

• A useful variant of a Turing machine — a multi-tape

Turing machine — will be introduced. A proof will be

sketched that the sets of “Turing-recognizable” and

“Turing-decidable” languages are not changed if these are

defined using multi-tape Turing machines instead of

(regular) one-tape Turing machines.

• Another variant — nondeterministic Turing machines —

will also be described. The sets of “Turing-recognizable”

and “Turing-decidable” languages are not changed if these

are defined using nondeterministic Turing machines

instead of (regular) one-tape Turing machines, either.

• the Church-Turing Thesis — a widely held belief that

Turing machines (and the definitions of their languages

and functions) really do model “computability” — will also

be introduced.
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Multi-Tape Turing Machines

For any (fixed) integer k such that k ≥ 1, a k -tape Turing

machine is a generalization of a Turing machine that has

k tapes — all of whose tape heads can move independently.

For example, if q ∈ Q and Γ = {a,b,c,d,?,⊔} then a

configuration of a 3-tape Turing machine might look like this:

q

↓
? a b a ⊔ ⊔ . . .

↓
c d a ⊔ ⊔ ⊔ . . .

↓

? a ⊔ a ⊔ ⊔ . . .
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Multi-Tape Turing Machines:

Representing Configurations

A configuration of a k-tape Turing machine M includes

information about

• the current state of M,
• the contents of the non-blank portion of each of the tapes

of M, and
• the location of each of M ’s tape heads.
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Multi-Tape Turing Machines:

Representing Configurations

Suppose that ♯ is a symbol that is not in Q ∪ Γ. Then there is a

straightforward way to generalize the representation of

configurations by strings (from the previous lecture) to obtain a

representation of a configuration of a k-tape Turing machine as

a string in (Q ∪ Γ ∪ {♯})⋆:

• For 1 ≤ i ≤ k , let µi ∈ (Q ∪ Γ)⋆ be the string representing

the current state, position of the i th tape head and contents

of the non-blank part of the i th tape.

• The configuration of M can then be represented by the

string

µ1 ♯ µ2 ♯ . . . ♯ µk ∈ (Q ∪ Γ ∪ {♯})⋆.

• This is the same as the string used to representation of M

as a standard deterministic Turing machine if k = 1.
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Multi-Tape Turing Machines

If ω = σ1σ2 . . . σn ∈ Σ⋆ then the start configuration for ω is one

such that

• the machine is in its start state q0;

• the first tape is just like the tape of a one-tape Turing

machine for this input: The leftmost n cells store the

symbols σ1, σ2, . . . , σn (in order), with all other cells

storing ⊔. The tape head points to the leftmost cell on the

tape.

• All other tapes are completely filled with ⊔’s, and their

tape heads point to the leftmost cell on the tape as well.
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Multi-Tape Turing Machines:

Initial Configuration

Then the string in (Q ∪ Γ ∪ {♯})⋆ representing this initial

configuration is

q0ω ♯q0 ♯q0 ♯ . . . ♯q0

that includes k copies of the symbol q0 and k − 1 copies of ♯.
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Multi-Tape Turing Machines

The transition function is now a (partial) function

δ : Q × Γk → Q × (Γ× {L,R,S})k .

• If δ(q, σ1, σ2, . . . , σk ) = (r , ((τ1,m1), (τ2,m2), . . . , (τk ,mk ))),
where q, r ∈ Q, σ1, σ2, . . . , σk , τ1, τ2, . . . , τk ∈ Γ, and where
m1,m2, . . . ,mk ∈ {L,R,S}, then, if the machine is in state q

and the tape head for the i th tape points to a copy of σi , for
1 ≤ i ≤ k , then — after its next move —

• the state should change to state r ,
• the copy of σi visible on the i th tape should be overwritten

with a copy of τi , for 1 ≤ i ≤ k , and
• for 1 ≤ i ≤ k ,

• if mi = L then the i th head should go left one position —

unless it is already at the leftmost cell of the tape;
• if mi = R then the i th tape head should go right one position;
• if mi = S then the i th tape head should not move.
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Multi-Tape Turing Machines

• δ(q, σ1, σ2, . . . , σk ) should be defined1 for all states

q ∈ Q \ {qaccept,qreject} and for all symbols

σ1, σ2, . . . , σk ∈ Γ.

• If q ∈ {qaccept,qreject} then δ(q, σ1, σ2, . . . , σk ) should not be

defined for any symbols σ1, σ2, . . . , σk .

Just like for regular Turing machines...

• M accepts ω if is possible to go from the start

configuration for ω to an accepting configuration (which

includes qaccept) using a finite number of moves;

• M rejects ω if it is possible to go from the start

configuration for ω to a rejecting configuration (which

includes qreject) using a finite number of moves; and

• M loops on ω otherwise.

1although, sometimes, the transitions will never be used
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Example: A Two-Tape Turing Machine

for Palindromes

Let Σ = {a,b} and consider the language

LPal = {ω ∈ Σ⋆ | ω = ωR}.

A 2-tape Turing machine MPal — with tape alphabet

Γ = {a,b,#,⊔}

— will now be described.
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Example: A Two-Tape Turing Machine

for Palindromes

On input ω ∈ Σ⋆:

1. If the first symbol visible is ⊔ then accept.

Otherwise insert a leftmost # to the left of the input —

shifting each symbol one position to the right in the process

— while making a second copy of this on the second tape.

A state diagram for this part of the process (with the accept

state written as qA and with the rejecting state and

transitions to it left out) is as shown on the following slide.
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Example: A Two-Tape Turing Machine

for Palindromes

q0start

qa

qb

q2

qA

Sa

Sb

Ta,a

Ta,b

Tb,a

Tb,b

Fa

Fb

S⊔

Transitions:

Sa: a,⊔/#,R,#,R
Sb: b,⊔/#,R,#,R
S⊔: ⊔,⊔/⊔,R,⊔,R

Ta,a: a,⊔/a,R,a,R
Ta,b: b,⊔/a,R,a,R
Tb,a: a,⊔/b,R,b,R
Tb,b: b,⊔/b,R,b,R

Fa: ⊔,⊔/a,R,a,R
Fb: ⊔,⊔/b,R,b,R
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Example: A Two-Tape Turing Machine

for Palindromes

2. The tape head for the first tape should be moved back to

the left until # is visible, once again, while the second tape

head should not move.

When # is visible on the first tape the first tape head should

move right while the second should move left — so that the

first tape head is pointing to the leftmost symbol in the

input while the second tape head is pointing to the

rightmost symbol in the input — and the machine should

go on to the third stage of this process.

A — very simple — state diagram for this stage is as

shown on the next slide.
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Example: A Two-Tape Turing Machine

for Palindromes

q2start q3

a,⊔/a,L,⊔,S
b,⊔/b,L,⊔,S
⊔,⊔/⊔,L,⊔,S

#,⊔/#,R,⊔,L
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Example: A Two-Tape Turing Machine

for Palindromes

3. The first tape can now be used to read the input from left to

right while the second tape can be used to read the input

from right to left.

If the input was not a palindrome then an a will be visible

on one of these tapes at the same time as a b is visible on

the other, and the input can then be rejected.

Otherwise, a ⊔ will be seen on the first tape at the same

time as # is seen on the second, and the input can be

accepted instead.

A (very simple) state diagram for this last part of the

computation is as shown on the following slide.
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Example: A Two-Tape Turing Machine

for Palindromes

q3start qA

a,a/a,R,a,L
b,b/b,R,b,L

⊔,#/⊔,S,#,S
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Example: A Two-Tape Turing Machine

for Palindromes

Exercise: Trace the execution of this machine on the inputs

• λ

• a

• abbabba

• abaa

in order to better understand what is doing, and to see that it

really does decide the language of palindromes.
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Proof of Equivalence — Part One

Claim #1: Let L ⊆ Σ⋆.

(a) If L is Turing-recognizable then there is a k-tape Turing

machine, for some integer k ≥ 1, that recognizes L.

(b) If L is Turing-decidable then there is a k-tape Turing

machine, for some integer k ≥ 1, that decides L.

Idea of the Proof: This part is easy: All you need to do is to

notice that any (regular) one-tape Turing machine is also a

“k-tape Turing machine” when k = 1. The only other thing you

need to do is to apply the definitions of “Turing-recognizable”

and “Turing-decidable.”
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Proof of Equivalence — Part Two

Claim #2: Let L ⊆ Σ⋆. Let k be any integer such that k ≥ 1.

(a) If there is a k-tape Turing machine M1 that recognizes L

then there is also a one-tape Turing machine M2 that

recognizes L, so that L is Turing-recognizable.

(b) If there is a k-tapeTuring machine M1 that decides L then

there is also a one-tape Turing machine M2 that decides L,

so that L is Turing-decidable.
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How To Prove This: A Simulation

A simulation is something that can be presented to relate the

power of two models of computation.

• These were used in Lecture #6 to prove that a language is

a regular language (that is, the language of a deterministic

finite automaton) if and only if it is the language of a

nondeterministic finite automaton.
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How To Prove This: A Simulation

As previously noted, in order to show that the machines

described by a second model of computation are (in some

sense) at least as powerful or efficient as the machines

described by a first model of computation, we generally do the

following:

(a) Consider an arbitrary machine M1, of the type described by

the first model of computation.

(b) Use M1 to define another machine M2, of the type

described by the second model of computation.

(c) Prove that M2 solves the same problem as M1.
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How To Prove This: A Simulation

When Turing machines (or other general machines) are

involved, the computation of the second machine M2, on a

given instance ω often includes the following.

1. Initialization (or “Setup”): Use ω to produce a

representation of M1, as it would be configured at the

beginning of its own execution on the same input ω.

When describing M1 it is generally necessary to show how

M2’s storage (for Turing machines, its finite control and

tape(s)) can be used to represent M1’s storage.

A process that can be used to produce the representation

of M1’s storage, for the beginning of an execution on

input ω, from the input ω itself, should generally be

presented and analyzed in order to carry out this step.
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How To Prove This: A Simulation

(b) Step-by-Step Simulation: Consider each of the possible

“moves” that M1 could make and each of the possible

configurations C1 that M1 might be in, before this move is

made.

Describe a process that can be used by M2 to begin with

its representation of C1 and “implement the move”’ by

producing a representation of C2, where C2 is the

configuration of M1 that would be reached (from C1) when

this move is executed.

Prove the correctness of this process.
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How To Prove This: A Simulation

(c) Completion (or “Cleanup”): If M1’s execution on the

input ω ends then, when this is detected, M2 uses its

representation of M1’s final configuration, Cf , on this input

string, to move to the configuration Ĉf that it should have

when its execution on the same input should end.

Once again, a process that can be used by M2 to do this

should be described and proved to be correct.
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Simulating Multi-Tape Turing Machines:

Eliminating a Trivial Case

Let k be a positive integer, let Σ be an alphabet, and let

M1 = (Q,Σ, Γ, δ,q0,qaccept,qreject)

be a k-tape deterministic Turing machine as described above,

with language L ⊆ Σ⋆.

• Note that if q0 = qaccept then L = Σ⋆ and it suffices to set

M2 to be a one-tape Turing machine such that q0 = qaccept

as well, in order to establish the desired result for Claim #2:

Both M1 and M2 accept every string ω ∈ Σ⋆ (so that

L = Σ⋆) without taking any steps at all.
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Simulating Multi-Tape Turing Machines:

Eliminating a Trivial Case

• The desired result for claim #2 is also easily established (in

much the same way) if q0 = qreject, so that L = ∅.

• We will therefore assume, for the rest of the proof of

Claim #2, that q0 /∈ {qaccept,qreject}. In this case T ≥ 1.
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Simulating Multi-Tape Turing Machines:

Organization of Data

• When going from the k-tape Turing machine M1 to a

one-tape Turing machine M2 that simulates it, there will be

a significant expansion of the tape alphabet: In particular, if

M1 and M2 each have input alphabet Σ, and M1 has tape

alphabet Γ, then M2 will have a much larger tape alphabet

Γ̂ = Σ ∪ {⊔,$} ∪ ({⊔, ↓} × Γ)k .

• This will allow us to view the non-blank part of M2’s tape to

have 2k tracks that can be used to store all the relevant

information on M1’s multiple tapes at any time.

• Note: It is assumed here, that $ /∈ Γ and that ↓/∈ Γ. The

new special symbols $ and ↓ should be renamed,

otherwise.
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Simulating Multi-Tape Turing Machines:

Organization of Data

For 1 ≤ i ≤ k ,

• Track 2i − 1 is used to store the location of M1’s i th tape

head, by having a ↓ in the cell where the tape head is

located and a ⊔ in all other cells representing the nonblank

part of M1’s i th tape.

• Track 2i is used to store the contents of the non-blank

portion of M1’s i th tape.
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Simulating Multi-Tape Turing Machines:

Organization of Data

Suppose, for example, that k = 3, Γ = {a,b,c,d,?,⊔} and the

tapes of M1 are currently as follows.

↓
? a b a ⊔ ⊔ . . .

↓
c d a ⊔ ⊔ ⊔ . . .

↓
? a ⊔ a ⊔ ⊔ . . .
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Simulating Multi-Tape Turing Machines:

Organization of Data

Then the contents of M2’s tape might be as follows. Track

numbers are shown to the left (and are not part of the tape.)

1. ⊔ ⊔ ⊔ ↓ ⊔
2. ? a b a ⊔
3. ↓ ⊔ ⊔ ⊔ ⊔
4.

$
c d a ⊔ ⊔

⊔ . . .

5. ⊔ ⊔ ⊔ ⊔ ↓
6. ? a ⊔ a ⊔
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Simulating Multi-Tape Turing Machines:

Organization of Data

M ′

2s finite control must also be significantly expanded: Let Q̂

be the states in M2.

• To begin, let us include Q ∪ {q̂0} where Q is the set of

states of M1, q̂0 /∈ Q, and q̂0 is the (new) start state of M2.

• So far, |Q|+ 1 states have been included in Q̂. Additional

states will be described and included, as the details of the

simulation are presented.
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Simulating Multi-Tape Turing Machines:

Initialization

Let us require that the simulation of every move of M1 by M2

should begin with M2’s tape head resting on the leftmost cell to

the right of $ on its tape — that is, the second cell.

In order to move from M2’s initial state on input ω to the

representation of M1’s initial configuration on the same input

string, M2’s moves should include

• a single sweep to the right over the non-blank portion of

the tape in order to update the tape — starting with the

symbol after $ and continuing with the rest of the

representation of the tapes, as given above, along with

• a single sweep back to the left2 in order to reposition the

tape head.

2with one last step, back to the right
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Simulating Multi-Tape Turing Machines:

Initialization

• During the sweep right, it is necessary to use the finite

control to remember a single symbol in Σ — because it is

originally found on one cell of the tape but will be

represented on the cell to the right of that.

• It is also necessary to remember whether the leftmost cell

of M1’s tape has been represented yet — in order to know

whether ↓ or ⊔ should used to represent locations of tape

heads when the next symbol is written onto M2’s tape.

• This “initialization” phase can be carried out by introducing

(at most) 2|Σ|+ 2 additional states to Q̂.

• This part of the simulation always ends. Indeed, the

number of steps of M2 needed is at most 3 if the input

string is empty, or at most 2n + 1 if the input string has

positive length n.



Multi-Tape TMs Example Equivalence and Simulations Nondeterministic TMs Church-Turing Thesis Expectations

Simulating Multi-Tape Turing Machines:

Simulation of a Move

Let τ1, τ2 be configurations of M1 such that τ1 ⊢ τ2. It is

necessary to describe and analyze a process used by M2 to

move from a representation of τ1 to a representation of τ2.

• The state non-halting state q included in τ1 (or, later, the

state included in configuration τ2) will be remembered

using the finite control.

• During a read phase the symbols visible on each tape

of M1 (as given by τ‘) will be discovered using M2’s tape

and remembered using the finite control.

• During a write phase M2’s tape updated to include the

symbols given by τ2 and update tape head location.

• A final tidying phase will be needed to complete the move

to the representation of τ2.
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Simulating Multi-Tape Turing Machines:

Simulation of a Move

During the read phase the symbol visible on M1’s i th tape is

discovered, for each integer i from 1 to k (in increasing order).

For each integer i such that 1 ≤ i ≤ k :

• During a sweep to the right a symbol storing 2k tracks

such that track 2i − 1 stores ↓ (instead of ⊔) is searched

for. When this is found M2 changes state, in order to

remember the state q of M1, the symbols on the first

i − 1 tapes that were discovered before this, and the

symbol in Γ that has been found in track 2i — the symbol

visible on M1’s i th tape.

• A sweep back to the left (with one last step right)

repositions the tape head.
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Simulating Multi-Tape Turing Machines:

Simulation of a Move

• The number of states that must be added to Q̂ to

implement this phase is (at most)

(|Q| − 2)

(
|Γ|k − 2

|Γ|

|Γ| − 1

)
.

• Suppose that, for 1 ≤ i ≤ k , the i th tape head of M1 has

distance ℓi from the leftmost cell of the tape. Then this

iteration of the “read” phase can be carried out using at

most 2
∑k

i=1 max(ℓi ,1) steps of M2.
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Simulating Multi-Tape Turing Machines:

Simulation of a Move

Suppose that M1 is in non-halting state q ∈ Q when in

configuration τ1 and, for 1 ≤ i ≤ k , the symbol σi ∈ Γ is visible

on M1’s i th tape. Then some transition

δ(q, (σ1, σ2, . . . , σk )) = (r , ((σ̂1,d1), (σ̂2,d2), . . . , (σ̂k ,dk )))

(where r ∈ Q, σ̂1, σ̂2, . . . , σ̂k ∈ Γ, and d1,d2, . . . ,dk ∈ {L,R,S})

— that should be applied to move from configuration τ1 to

configuration τ2 — can now be determined.

Since M1 is a fixed Turing machine, we can think of M1’s

transitions as being included in the definition of M2’s finite

control: We can move to state of M2 for the beginning of the

write phase, that remembers the transition of M1 that was used,

as part of the final step of M2’s read phase.
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Simulating Multi-Tape Turing Machines:

Simulation of a Move

During the write phase — when the above transition is to be

applied — the contents of tracks 2i − 1 and 2i in cells are

changed on M2’s tape, in order to reflect a change to the

contents of M1’s i th tape and a movement of its tape head. This

will be carried out for i = k , k − 1, . . . ,1, that is, by decreasing

order of i .3 For each i . . .

• An initial sweep right is needed to locate the cells of M2’s

tape that must be updated. A constant number of steps are

needed to update the tape.

• A sweep back to the left (with one last step right) is

needed to reposition the tape head.

3This order is not necessary but it simplifies the description of M2.
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Simulating Multi-Tape Turing Machines:

Simulation of a Move

• The number of states that must be added to Q̂ to

implement this phase is (at most)

4k · (|Q| − 2) · |Γ|k .

• Suppose that, for 1 ≤ i ≤ k , the i th tape head of M1 has

distance ℓi from the leftmost cell of the tape when this

“write” phase begins — so that it has distance at most

ℓi + 1 from the leftmost cell of the tape when this “write”

phase ends. Then the number of steps used by M2 during

this execution of the “write” phase is at most

2

(
k∑

i=1

ℓi

)
+ 4k .
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Simulating Multi-Tape Turing Machines:

Simulation of a Move

The tidying phase removes unnecessary cells (showing each

of M1’s tapes showing ⊔, with none of the tape heads resting on

the cell) from the right end of the non-blank part of M2’s tape.4

This can be carried out using a single sweep to the right,

followed by a sweep back to the left.

• At most 3 · |Q| states must be added to Q̂ to implement this

phase.

• Let K be the number of cells in the non-blank part of M2’s

tape when the simulation of this step of M1 begins. Then

the number of steps of M2 needed to implement this

“tidying” phase is at most 2K + 2.

4This is not really necessary, but it makes the simulation a bit easier to

describe in more detail.
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Simulating Multi-Tape Turing Machines:

Simulation of a Move

It follows that the total number of states added to Q̂ to

implement the simulation of a move, is at most

(|Q| − 2) ·

(
|Γ|k − 2

|Γ|

|Γ| − 1

)
(for the “read” phase)

+ 4k · (|Q| − 2) · |Γ|k (for the “write” phase)

+ 3 · |Q| (for the “cleanup” phase)

= 4k · (|Q| − 2)|Γ|k + (|Q| − 2)|Γ|k

+

(
3 − 2

|Γ|

|Γ| − 1

)
· (|Q| − 2) + 6.
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Simulating Multi-Tape Turing Machines:

Simulation of a Move

If ℓi is the distance of M1’s i th tape head from the leftmost cell,

when this machine is in configuration τ1, for 1 ≤ i ≤ k , and K is

the number of cells in the non-blank part of M2’s tape when the

simulation of the move from τ1 to τ2 begins, then it follows that

the total number of steps of M2 to simulate this move is at most

4

(
k∑

i=1

max(ℓi ,1)

)
+ 2K + 4k + 2.



Multi-Tape TMs Example Equivalence and Simulations Nondeterministic TMs Church-Turing Thesis Expectations

Simulating Multi-Tape Turing Machines:

Simulation of a Move

The next two claims are easily proved by induction on the

number of moves of M1 that have been simulated so far.

Subclaim #3: Suppose that t ≥ 0 and that the first t moves of

the execution of M1 on input ω ∈ Σ⋆ have been performed.

Then each tape head of M1 is at most t positions away from the

leftmost cell of its tape. That is, ℓi ≤ t for 1 ≤ i ≤ k .

Proof: Easy induction on t .
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Simulating Multi-Tape Turing Machines:

Simulation of a Move

Subclaim #4: Suppose that t ≥ 0. Then the number K of

non-blank cells on M2’s tape, after the first t moves of M1 have

been simulated, is at most

max(2, |ω|+ 1, t + 1).

Proof: Easy induction on t .
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Simulating Multi-Tape Turing Machines:

Simulation of a Move

Subclaim #5: If t ≥ 0 and M1 makes at least t moves when it is

executed on an input string ω ∈ Σ⋆ with length n, then the

number of moves used by M2 to simulate M ’s t th move is at

most linear in k × t .

How To Prove This: Apply the results from the previous two

subclaims to continue the analysis.
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Simulating Multi-Tape Turing Machines:

Continuation of Analysis

Subclaim #6: Suppose that M1 makes at least t moves when

executed on an input string ω ∈ Σ⋆ with length n.

Then the total number of moves used by M2 to initialize its tape

and then simulate the first t moves of M1 is at most linear

in n + k × t2.

How To Prove This: Use the analysis of the Initialization

phase above, along with Subclaim #5, to write down a

summation for the total number of steps used by M̂ — and

then notice that this sum really is at most linear in n + k × t2.
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Simulating Multi-Tape Turing Machines:

Cleanup Phase

There is very little “cleanup” needed for this simulation: M2

should simply move to its accept state (respectively, its reject

state) after simulating a move in which M1 moves to its accept

state (respectively, its reject state).

• No additional states of M2, are needed to carry this out,

and at most one more step is used.
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Simulating Multi-Tape Turing Machines

Subclaim #7: Let ω ∈ Σ⋆.

(a) If M1 accepts ω then M2 also accepts ω.

(b) If M1 rejects ω then M2 also rejects ω.

(c) If M1 loops on ω then M2 also loops on ω.

Proof: Suppose that M1 accepts or rejects ω. Then it does so

after making t moves for some integer t ≥ 0. Parts (a) and (b)

now follow by Subclaim #6 (and the “Cleanup Phase” described

above).

Part (c) follows by an inspection of these details too: M2 only

accepts (or rejects) after confirming that M1 would too.
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Simulating Multi-Tape Turing Machines

Subclaim #8: Let L ⊆ Σ⋆.

(a) If M1 recognizes L Then M2 recognizes L as well.

(b) If M1 decides L then M2 decides L too.

How To Prove This: Use the definition of what it means for a

Turing machine to recognize or decide a language, along with

Subclaim #7.

Note: This completes a proof of Claim #2.
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Simulating Multi-Tape Turing Machines

Confession: This lecture has included a proof of

Theorem 3.13 in Introduction to the Theory of Computation —

but the proof in that book is a different one!

Instead of using 2k tracks, the simulation in the textbook uses a

much smaller tape alphabet: Γ̂ includes

• Γ,

• a symbol σ̇ for every symbol σ ∈ Γ, and

• a symbol # that is assumed not to belong to Γ.

The non-blank part of M2’s tape now looks like

#T1#T2# . . . #Tk#

where Ti is the non-blank part of M1’s i th tape — with σ̇
appearing instead of σ at the location of the tape head.
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Simulating Multi-Tape Turing Machines

For example, if M1’s tapes look like this:

↓
? a b a ⊔ ⊔ . . .

↓
c d a ⊔ ⊔ ⊔ . . .

↓
? a ⊔ a ⊔ ⊔ . . .

then the non-blank portion of M2’s tape would look like this:

#?abȧ#ċda#?a ⊔ a⊔̇#

Some details of the simulation in the proof in the above book

are a bit more complicated (and, potentially confusing) than the

details of the simulation in these notes. This is why the other

standard proof of Claim #2 is given in these notes.
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Simulating Multi-Tape Turing Machines

• It is also possible to define multi-tape Turing machines

that compute functions and prove similar results

concerning these.

• These are described in a supplemental document for this

lecture.
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Nondeterministic Turing Machines

A nondeterministic Turing machine is the same as a regular

Turing machine except that there can be zero, one, or many

moves that might be possible at any time — so that the

transition function is now a (partial) function

δ : Q × Γ → P(Q × Γ× {L,R}).

• If q ∈ Q \ {qaccept,qreject} then δ(q, σ) should be defined for

every symbol σ ∈ Γ.

However, it is possible that δ(q, σ) = ∅, so that there is no

“next move” that can be used if M is in state q, and σ is

visible on the tape.

• If q ∈ {qaccept,qreject} then δ(q, σ) should not be defined for

any symbol σ ∈ Γ.

This is (essentially) the same as the change made to the

definition of a DFA in order to define an NFA.
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Nondeterministic Turing Machines

Let M = (Q,Σ, Γ, δ,q0,qaccept,qR) be a nondeterministic Turing

machine and let ω ∈ Σ⋆.

• M accepts ω if there exists at least one (finite) sequence

of moves, beginning in M ’s initial configuration for ω, that

ends with M in state qaccept.

• M rejects ω if every sequence of moves of M, beginning

with the initial configuration for ω is finite — either because

the rejecting state has been reached or a “non-halting”

state has been reached, but there is move that can be

made (because M in a state q, and σ is now visible, where

δ(q, σ) = ∅).

• M loops on ω otherwise.
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Nondeterministic Turing Machines

Let M = (Q,Σ, Γ, δ,q0,qaccept,qreject) be a nondeterministic

Turing machine and let L ⊆ Σ⋆.

• M recognizes L if M accepts every string ω ∈ L and M

either rejects or loops on every string ω ∈ Σ⋆ such that

ω /∈ L.

• M decides L if M accepts every string ω ∈ L and M rejects

every string ω ∈ Σ⋆ such that ω /∈ L — so that M does not

loop on any string in Σ⋆.5

5There is an even stronger condition that is sometimes required, in order

to say that a nondeterministic Turing machine “decides” a language — but

adding this does not change the set of languages that are “decidable” by

nondeterministic Turing machines. See the supplemental document for

details, if you are interested in this.
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Nondeterministic Turing Machines

Claim #9: Let L ⊆ Σ⋆ (for an alphabet L).

(a) L is Turing-recognizable if and only if there exists a

nondeterministic Turing machine M such that M

recognizes L.

(b) L is Turing-decidable if and only if there exists a

nondeterministic Turing machine M such that M decides L.

Once again, simulations can be used to prove the above

result. A supplemental document, for this lecture, includes

additional information about this.
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Church-Turing Thesis

• Beginning in the 1930’s, a wide variety of abstract models

of computation were proposed.

• While some were too limited to be useful to define

“computability”,6 simulations were eventually obtained to

show that all of the rest of them were “equivalent” — they

all defined effectively the same sets of “recognizable”

languages, “decidable” languages and “computable”

functions as the ones we are now studying.

• The Church-Turing Thesis is a widely held belief that

Turing machines (and the sets of languages and functions

defined using them) really do model computability.

Additional details about — quite important — thesis are

given in a supplemental document about this.

6Many of these were still useful, for other reasons!
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Expectations

Expectations:

• Students will not be asked about the details of the proofs of

the claims, given in this lecture, on a quiz, exam, or

assignment in this course!

• However, it is important that you understand (and

remember) the results that has been given: If one-tape

Turing machines are replaced, in definitions, by multi-tape

Turing machines — or by nondeterministic Turing

machines — then the set of languages that are

recognizable, or decidable, is not changed.
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Expectations

• The idea that one kind of machine can simulate the

computation of a different kind of machine is extremely

important.

• It will be proved that Turing machines can simulate other

models of computation too. It is now sufficient to prove that

a multi-tape Turing machine can simulate these other

models to prove this.

• On the other hand, if I am trying to show you that a

problem cannot be solved then I will probably discuss

(hypothetical) one-tape Turing machines, instead —

because that will make this easier to prove.
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