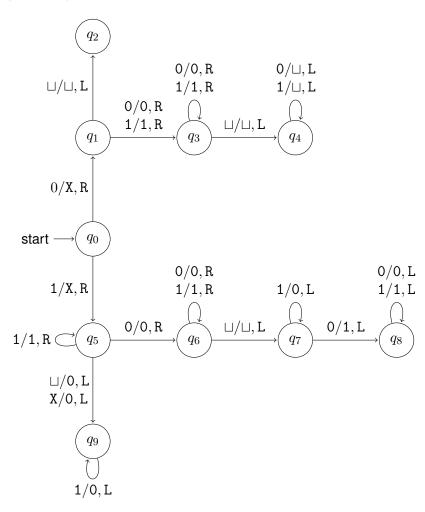

Lecture #10: Introduction to Turing Machines Supplement for Lecture Presentation

Let $\Sigma = \{a, b, c\}$. The first part of the presentation concerns the Turing machine

$$M_1 = (Q_1, \Sigma, \Gamma_1, \delta_1, q_0, q_{\mathsf{accept}}, q_{\mathsf{reject}})$$

where $\Gamma_1 = \{a, b, c, X, \sqcup\}$, with an incomplete transition diagram that is as follows:



In this diagram, the accepting state q_{accept} is shown as " q_A " instead. As the above 7-tuple indicates, this Turing machine has start state q_0 , accepting state q_{accept} , and rejecting state q_{reject} . Transitions for states $q \in Q_1 \setminus \{q_A, q_R\}$ and symbols $\sigma \in \Gamma$ that are not shown all have the form $\delta_1(q,\sigma) = (q_R,\sigma,\mathbb{R})$.

Now let $\Sigma_1=\Sigma_2=\{\textbf{0},\textbf{1}\}.$ Consider the Turing machine

$$M_2 = (Q_2, \Sigma_1, \Sigma_2, \Gamma_2.\delta_2, q_0, q_{\mathsf{halt}})$$

where $\Gamma_2 = \{ \texttt{0}, \texttt{1}, \texttt{X}, \sqcup \},$ with an incomplete transition diagram as follows:

This is a Turing machine where $\Gamma = \{0, 1, X, \sqcup\}$ and with a set of states

$$Q_2 = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_9, q_{\text{halt}}\}.$$

The halt state, q_{halt} , and transitions leading to it, are not shown in this diagram. The missing transitions, leading to the halting state, are as follows.

- (a) $\delta_2(q_0, \sigma) = (q_{\text{halt}}, \sqcup, L)$ for $\sigma = \sqcup$ and $\sigma = X$.
- (b) $\delta_2(q_1, X) = (q_{\mathsf{halt}}, \sqcup, \mathsf{L})$ so that $\delta_2(q_1 X) = \delta_2(q_1, \sqcup)$.
- (c) $\delta_2(q_2, \sigma) = (q_{\text{halt}}, 1, L)$ for $\sigma \in \Gamma$.
- (d) $\delta_2(q_3, X) = (q_{\text{halt}}, \sqcup, L)$ so that $\delta_2(q_3, X) = \delta_2(q_3, \sqcup)$.
- (e) $\delta_2(q_4, \sigma) = (q_{\text{halt}}, \sqcup, L)$ for $\sigma = \sqcup$ and $\sigma = X$.
- (f) $\delta_2(q_6, X) = (q_{\text{halt}}, \sqcup, L)$ so that $\delta_2(q_6, X) = \delta_2(q_6, \sqcup)$.
- (g) $\delta_2(q_7, \sigma) = (q_{\mathsf{halt}}, \sqcup, \mathsf{L})$ for $\sigma = \sqcup$ and $\sigma = \mathsf{X}$.
- (h) $\delta_2(q_8, \sigma) = (q_{\text{halt}}, 1, L)$ for $\sigma = \sqcup$ and $\sigma = X$.
- (i) $\delta_2(q_9, \sigma) = (q_{halt}, 1, L)$ for $\sigma = \sqcup$ and $\sigma = X$.