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Goal for Today

Goals for Today:

• Introduction of a theorem called the Pumping Lemma for

Regular Languages

• Describe how to use this to prove that a language L ⊆ Σ⋆

is not regular!
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Pumping Lemma for Regular Languages

Pumping Lemma: Let Σ be an alphabet and let A ⊆ Σ⋆.

If A is a regular language, then there is a number p ≥ 1 (called

the pumping length for A) — which only depends on A —

such that if s is any string in A with length at least p, then s can

be divided into three pieces s = xyz (for x , y , z ∈ Σ⋆), satisfying

the following three conditions.

1. xy i z ∈ A for every integer i such that i ≥ 0.

2. |y | > 0 (so that y 6= λ).

3. |xy | ≤ p.

Note: y i is the concatenation of i copies of the string y .
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Pumping Lemma for Regular Languages

Proof: Let A ⊆ Σ⋆ be a regular language.

• Then there is a DFA M = (Q,Σ, δ,q0,F ) with language A.

• Let p = |Q|, the number of states in M — so that p ≥ 1 is a

number that depends on A (but nothing else).

• Either A does not include any strings s ∈ Σ⋆ with length at

least p, or A includes at least one such string.

• These cases are considered separately, next.



Introduction Pumping Lemma and Proof Application Example Summary

Pumping Lemma for Regular Languages

Case: A does not include any strings s ∈ Σ⋆ with length at

least p.

• In this case there is nothing more we need to prove —

because the claim only said something about strings s ∈ A

with length at least p.
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Pumping Lemma for Regular Languages

Case: A includes at least one string s ∈ Σ⋆ with length at

least p.

• Let s be some string in Σ⋆ such that s ∈ A and s has length
at least p. It is necessary (and sufficient) to show that it is
possible to write s as xyz (for x , y , z ∈ Σ⋆) such that

1. xy iz ∈ A for every integer i ≥ 0.

2. |y | > 0 (so y 6= λ).
3. |xy | ≤ p.
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Pumping Lemma for Regular Languages

• Let m = |s|, so that m ≥ p, and suppose that

s = σ1σ2 . . . , σm ∈ Σ∗.

• Let r0, r1, . . . , rm be the sequence of states visited as s is

processed — so that r0 = q0 = δ⋆(q0, λ), and

ri = δ⋆(q0, σ1σ2 . . . σi) for 1 ≤ i ≤ m.
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Pumping Lemma for Regular Languages

• In other words, r1 is reached after processing σ1, r2 is

reached after processing σ1σ2, and so on.

• Consider the first p + 1 states in this sequence,

r0, r1, . . . , rp

which are visited as the “prefix” σ1σ2 . . . σp of s with

length p is processed.

• Key Observation: Since |Q| = p and the above sequence

of states has length p + 1, at least one state q̂ ∈ Q must

appear at least twice in the above sequence!



Introduction Pumping Lemma and Proof Application Example Summary

Pumping Lemma for Regular Languages

• Now let q̂ ∈ Q be a state that does appear at least twice in
the sequence r0, r1, . . . , rp. Suppose it appears first as “ri ”
and the second time as “rj ”, so that

• i and j are integers such that 0 ≤ i < j ≤ p.
• If x = σ1σ2 . . . σi , the prefix of s with length i, then

δ⋆(q0, x) = ri = q̂,

because q̂ is the state that is reached after processing the

first i symbols of s.
• y = σi+1σi+2 . . . σj , the string consisting of the next j − i

symbols in s, then

δ⋆(q̂, y) = rj = q̂,

because processing the next j − i symbols takes you back

to the state rj = q̂ again.
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Pumping Lemma for Regular Languages

• Finally, if z = σj+1σj+2 . . . , σm, so that s = xyz,

then

δ⋆(q̂, z) = rF for some state rF ∈ F .

This is true because processing the rest of the

symbols in s must take you to an accepting state,

since s ∈ A = L(M).

• Now all that is left is to check that properties 1, 2, and 3 in

the claim are all satisfied when s is written (as xyz) in this

way.
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Pumping Lemma for Regular Languages

1. Since δ̂⋆(q̂, y) = q̂, δ̂⋆(q̂, y i) = q̂ for every integer i ≥ 0 as

well: If you start from q̂ and process y i , then you do so by

following a loop that takes you back to q̂, i times.

Now, if you start from q0 and process xy i z, then

• You will reach q̂ after processing x , because δ̂⋆(q0, x) = q̂.
• You end up back in state q̂ after processing y i , because

δ̂⋆(q̂, y i) = q̂.
• You will end up in state rF after processing the remaining

substring z, because δ̂⋆(q̂, z) = rF .

So δ̂⋆(q0, xy i z) = rF ∈ F . It follows that xy iz ∈ L(M) = A.

Since this is true for every integer i ≥ 0, this establishes

the first property mentioned in the claim.
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Pumping Lemma for Regular Languages

2. The string y was chosen to have length j − i > 0, so that

y 6= λ. Thus the second property, mentioned in the claim,

is also satisfied.

3. The strings x and y were chosen so that xy was the prefix

of s with length j ≤ p. Thus |xy | ≤ p, so that the third

property, mentioned in the claim, is satisfied too.

Since s was an “arbitrarily chosen” string in A with length at

least p, it follows that every such string can be written in this

way — and this completes the proof of the claim.

Note: This is essentially the same as the proof of

Theorem 1.70 on pages 78–79 of the third edition of Michael

Sipser’s text, Introduction to the Theory of Computation.
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Applying the Pumping Lemma

• We will not be using this theorem to try to prove that a

given language A is a regular language.

• Instead, this will be used in proofs — by contradiction — to

prove that various languages are not regular.
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An Example

Let Σ = {a,b} and consider the language

L1 = {an
b

n | n ≥ 0}

so that L includes strings λ,ab,aabb,aaabbb, . . . , but L1 does

not include ba or abb.

Claim: L1 is not a regular language.

Proof: Suppose, to obtain a contradiction, that L1 is a regular

language.



Introduction Pumping Lemma and Proof Application Example Summary

An Example

Then it follows by the Pumping Lemma for Regular Languages,

that there is a number p ≥ 1 such that if s is any string in L1

with length at least p, then s can be divided in to three pieces

s = xyz (for x , y , z ∈ Σ⋆), satisfying the following three

conditions.

1. xy i z ∈ L1 for every integer i such that i ≥ 0.

2. |y | > 0 (so that y 6= λ).

3. |xy | ≤ p.
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An Example

Consider the string s = a
p
b

p.

• s ∈ L1, since s = a
n
b

n when n = p.

• |s| = 2p ≥ p.

It follows that s = xyz for strings x , y , z ∈ Σ⋆ that satisfy

properties #1 – #3, as above.

• Since xy is a prefix of s with length at most p (by

property #3), and the first p symbols in s are all a’s,

xy = a
k for some integer k such that 0 ≤ k ≤ p.

Since s = a
p
b

p = xyz = akz, it follows that z = ap−kbp.
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An Example

• By property #2, |y | > 0 so that y 6= λ. Thus (since

|xy | = |x |+ |y | = k), |x | = h and |y | = ℓ for integers h

and ℓ such that h ≥ 0, ℓ ≥ 1, and h + ℓ = k .

Since xy = a
k it now follows that x = a

h and y = a
ℓ.

• Let i = 0. Then

xy iz = xλz = xz = a
h
a

p−k
b

p = a
p−ℓ

b
p

since h + ℓ = p. Thus xy iz /∈ L1, since ℓ > 0 (so that

p − ℓ 6= p).

• Thus property #1 is not satisfied (since xy i z /∈ L1 when

i = 0), and a contradiction has been obtained.

• It follows that L1 is not a regular language.
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Summary of Process

In order to prove that a given language L ⊆ Σ⋆ is not a regular

language, using the Pumping Lemma for Regular Languages,

you should do the following things.

1. Assume — to obtain a contradiction — that L is a regular

language.

Note: It is a “courtesy to the reader” to say that you are

giving a proof by contradiction, at the beginning of your

proof.
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Summary of Process

2. Note that it follows, by the Pumping Lemma for Regular

Languages, that there exists a number p ≥ 1 such that if s

is any string in L with length at least p, then s can be

divided in to three pieces s = xyz (for x , y , z ∈ Σ⋆),

satisfying the following three conditions.

1. xy iz ∈ L for every integer i such that i ≥ 0.

2. |y | > 0 (so that y 6= λ).

3. |xy | ≤ p.
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Summary of Process

Things to Note:

• You cannot pick and use a particular value for p, or

assume anything more about its value: You would be

introducing another contradiction if you did that, and then

you could not conclude that the original assumption was

incorrect, once a contradiction was obtained.

• It is advisable to state the properties that follows, by the

Pumping Lemma, in your written proof — because you will

need to refer to all of them, later on in the proof. Students

who leave them out generally write proofs that are hard to

read and they often make mistakes, because they get the

properties (that follow from the Pumping Lemma) mixed up

when they need to use them.
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Summary of Process

3. Describe a string s — that will generally depend on the

value p that has just been chosen. Give a (generally short)

proof that s ∈ L and |s| ≥ p.

Note: You do get to pick the string s that will be used for

the rest of this proof!

However, this is generally the trickiest part of this process!

Some choices of s will make the rest of this easy. Other

choices will make it impossible to correctly complete the

proof.
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Summary of Process

4. Observe that it now follows that there exist strings

x , y , z ∈ Σ⋆ such that s = xyz and properties #1, #2,

and #3 (listed in the “Pumping Lemma for Regular

Languages”) hold.

Note: Once again, you do not get to choose the strings x ,

y and z to work with — you need to prove that there is a

problem with all possible choices of these strings.

However, if the string s has been chosen well (and the

language L is really not regular) then it should be possible

to show that if x and y are any initial strings of s such that

properties #2 and #3 hold, then xy i z /∈ L for some

nonnegative integer i .
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Summary of Process

5. If a contradiction really is obtained, without assuming

anything more than what has been noted above, then you

can (and should) conclude that the language L is not

regular, as claimed.
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Expectations

• The next lecture will provide another technique that can be

used to prove that various languages are not regular —

which is probably easier to use, and probably more

important, than this one.

• There will be at least one problem on an upcoming tutorial

exercise asking students to use the Pumping Lemma for

Regular Languages to prove that a given language is not

regular. Given sufficient time and hints, students may also

be asked to use the Pumping Lemma for Regular

Languages to prove that a language is not a regular on a

test.
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