Lecture #8: Nonregular Languages, Part One Proving That a Language is Not Regular — Another Example

Let $\Sigma = \{0, 1\}$. The *reversal* of a string

$$
\omega = \sigma_1 \sigma_2 \dots \sigma_n
$$

is the string

$$
\omega^R = \sigma_n \dots \sigma_2 \sigma_1
$$

obtained by listing the symbols in ω in reverse order. Thus $\lambda^R=\lambda$, 0 $^R=$ 0, and 001 $^R=$ 100. Note that if $\omega \in \Sigma^{\star}$ then $\omega^R \in \Sigma^{\star}$ as well. Furthermore ω and ω^R always have the same length. They also contain the number of 0's and the same number of 1's.

Suppose that $L_2=\{\omega\cdot\omega^R\,|\,\omega\in\Sigma^\star\}.$ Then L_2 includes $\lambda,$ 00, 001100 and lots of other strings, but not 10, 0010, or any string with odd length.

Claim. L_2 *is not a regular language.*

Proof. Suppose, to obtain a contradiction, that L_2 is not a regular language.

Then it follows, by the Pumping Lemma for Regular Languages, that there is a number $p \geq 1$ such that if s is any string in L_2 with length at least p, then s can be divided into three pieces $s = xyz$ (for $x, y, z \in \Sigma^*$), satisfying the following three conditions.

- 1. $xy^iz \in L_2$ for every integer i such that $i \geq 0$.
- 2. $|y| > 0$ (so that $y \neq \lambda$).
- 3. $|xy| \leq p$.

Consider the string $s = 0^p 110^p$.

- $s \in L_2$ since $s = \omega \cdot \omega^R$ for the string $\omega = 0^p 1 \in \Sigma^*$.
- $|s| = 2p + 2 > p$.

It follows that $s = xyz$ for strings $x, y, z \in \Sigma^*$ for strings $x, y, z \in \Sigma^*$ that satisfy properties #1– #3, above.

• Since xy is a prefix of s with length at most p (by property #3), and the first p symbols of s are all copies of "0", $xy=0^k$ for some integer k such that $0\leq k\leq p.$

Since $s = 0^p 110^p = xyz = 0^k z$, it follows that $z = 0^{p-k} 110^p$.

- By property #2, $|y| > 0$, so that $y \neq \lambda$. Thus (since $|xy| = |x| + |y| = k$, $|x| = h$ and $|y| = \ell$ for integers h and ℓ such that $h \geq 0$, $\ell \geq 1$, and $h + \ell = k$. Since $xy = 0^k$ it now follows that $x = 0^h$ and $y = 0^{\ell}$.
- Let $i = 2$. Then

$$
xy^{i}z = xy^{2}z = xyyz = 0^{h}0^{\ell}0^{\ell}0^{p-k}110^{p} = 0^{p+\ell}110^{k},
$$
\n(1)

since $h + \ell = k$ — and it follows, by property #1, above, that this string is in the language L_2 .

Now, if ℓ is odd then it is impossible for xy^2z to belong to L_2 , because the length $(2p+2+\ell)$ of this string is odd and, as noted above, L_2 only contains strings with even length. The integer ℓ must, therefore, be even. Since $\ell \geq 1$, it now follows that $\ell \geq 2$.

Furthermore, one can see by the equation at line (1) that the string xy^2z has length $2p+\ell+2=$ $2(p+\ell/2+1).$ Since $xy^2z\in L_2,$ it must be the case that

$$
xy^2 = \omega \cdot \omega^R \tag{2}
$$

for some string $\omega\in \Sigma^{\star}.$ Since ω and its reversal have the same length, the length of ω must be one-half the length of xy^2z , that is, $p + \ell/2 + 1$. Thus ω is the *prefix* of xy^2z with this length.

Now, since $\ell \geq 2$, $1 \leq \ell/2$, and the length of ω is $p + \ell/2 + 1 \leq p + \ell/2 + \ell/2 = p + \ell$. Since ω is a prefix of xy^2z and (again, by the equation at line (1)) the first $p+\ell$ symbols in sy^2z are all copies of "0", it must be the case that $\omega = 0^{p+\ell/2+1}.$

However, ω^R must be the string $0^{p+\ell/2+1}$ as well, so that

$$
\omega \cdot \omega^{R} = 0^{p+\ell/2+1} \cdot 0^{p+\ell/2+1} = 0^{2(p+\ell/2+1)} = 0^{2p+\ell+2} \neq 0^{p}110^{p} = xy^{2}z.
$$

This *contradicts* the equation at line (2), above, and it follows, by this contradiction, that the assumption in this proof must be false. Thus L_2 is not a regular language, as claimed. \Box