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Goal for Today

Goals for Today:

• Introduce the regular operations: Operations that can be

used to produce new languages (subsets of Σ⋆, for some

alphabet Σ) from old ones.

• Show that the set of “regular languages” is closed under

each of these operations. This gives us another way to

show that a given language is a “regular language” (that is,

the language of some DFA).

• Introduce regular expressions — which provide another

way to specify regular languages, and which have a variety

of applications.
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The “Union” of Two Languages

Definition: Let Σ be an alphabet and let A,B ⊆ Σ⋆. The union

of the languages A and B is the language

A ∪ B = {ω ∈ Σ⋆ | ω ∈ A or ω ∈ B (or both)}.

• Example: Suppose that Σ = {a,b,c}, A = {a}, and

B = {bb,c}. Then

A ∪ B = B ∪ A = {a,bb,c}.

• This should not be a surprise... since the union of

languages is the same as the union of sets (of strings).
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The “Concatenation” of Two Languages

Definition: Let Σ be an alphabet and let A,B ⊆ Σ⋆. The

concatenation of the languages A and B is the language

A ◦ B = {ω1 · ω2 | ω1 ∈ A and ω2 ∈ B}.

• Example: Suppose that Σ = {a,b,c}, A = {a}, and

B = {bb,c}. Then

A ◦ B = {abb,ac} and B ◦ A = {bba,ca}.
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The Kleene Star of a Language

Definition: Let Σ be an alphabet and let A ⊆ Σ⋆. The Kleene

star of the language A is the language

A⋆ = {ω1 · ω2 . . . ωk | k ≥ 0 and ωi ∈ A for 1 ≤ i ≤ k}

This language is also, sometimes called the Kleene closure

of A — or the star of A.

• Example: Suppose that Σ = {a,b,c}, A = {a}, and

B = {bb,c}. Then

A⋆ = {λ,a,aa,aaa,aaaa, . . . }

= {ω ∈ Σ⋆ | ω only includes a’s}.
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The Kleene Star of a Language

On the other hand, B⋆ includes the following strings (along with

lots more):

• λ (obtained by setting k = 0)

• bb (obtained by setting k = 1 and x1 = bb)

• c (obtained by setting k = 1 and x1 = c)

• bbbb (obtained by setting k = 2 and x1 = x2 = bb)

• bbc (obtained by setting k = 2, x1 = bb, and x2 = c)

• cbb (obtained by setting k = 2, x1 = c, and x2 = bb)

• cc (obtained by setting k = 2 and x1 = x2 = c)



Regular Operations Closure Properties Regular Expressions

Regular Operations

• Each of union, concatenation and Kleene star of can be

thought of as operations on the set of languages over an

alphabet Σ.

• Each of union and concatenation can be thought as

binary operations on the set of languages over Σ. That

is, each can be used, with a pair of languages over Σ, to

produce another language over Σ.

• Kleene star can be thought of as a unary operation. That

is, it can be used, with a single language over Σ, to

produce another language over Σ.
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Regular Operations

Definition: For any alphabet Σ, the set of operations

• union,

• concatenation, and

• Kleene star

are the regular operations over Σ. (These are sometimes just

called the “regular operations”, without saying what the

alphabet is.)
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Closure Properties

Theorem 1. Let Σ be an alphabet, and let A,B ⊆ Σ⋆.

(a) If A and B are regular languages then A ∪ B is a regular

language, as well.

(b) If A and B are regular languages, then A ◦ B is a regular

language, as well.

(c) If A is a regular language then A⋆ is a regular language as

well.
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Closure Properties — About the Proof

• The proof of Theorem #1 is a constructive proof. That is,

it includes algorithms (or “constructions”) that receive

nondeterministic finite automata for any pair of

languages A,B ⊆ Σ as input, and return nondeterministic

finite automata for A ∪ B, A ◦ B and A⋆ as output — along

with proofs that these algorithms are correct.

• This proof is given — for interested students — in a

supplement for this lecture.
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Meaning of “Closure Property”

• A closure property for a set S of languages over an

alphabet Σ, is a property stating — for an operation on

languages over Σ — that if the operation is applied to

languages that all belong to the set S, then the result is a

language that belongs to the set S, as well.

• Parts (a), (b), and (c) of Theorem #1 are examples of

closure properties for the set of regular languages over an

alphabet Σ.
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Closure Properties — An Application

This gives us another way to prove that a language is

regular: Show that it is the union, concatenation or star of

other regular language(s).

Example: Suppose that Σ = {0, 1} and consider the language

L = {ω ∈ Σ⋆ | either 11 or 101 (or both) is a substring of ω}.

1. Let L1 = {11}. Then L1 is a regular language, because it is

the language of the following NFA:

q0start q1 q2
1 1
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Closure Properties — An Application

2. Let L2 = Σ = {0, 1}. Then L2 is a regular language

because it is the language of the following NFA:

q0start q1

0, 1

3. Let L3 = Σ⋆. Then L3 is a regular language — by closure

under Kleene star — because L2 is a regular language

and L3 = L⋆

2.

4. Let L4 = {ω ∈ Σ⋆ | ω ends with 11}. Then L4 is a regular

language — by closure under concatenation — because

L1 and L3 are regular languages, and L4 = L3 ◦ L1.
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Closure Properties — An Application

5. Let L5 = {ω ∈ Σ⋆ | 11 is a substring of ω}. Then L5 is a

regular language — by closure under concatenation —

because L3 and L4 are regular languages, and L5 = L4 ◦L3.

6. Let L6 = {101}. Then L6 is a regular language because it

is the language of the following NFA:

q0start q1 q2 q3
1 0 1

7. Let L7 = {ω ∈ Σ⋆ | ω ends with 101}. Then L7 is a regular

language — by closure under concatenation — because

L3 and L6 are regular languages, and L7 = L3 ◦ L6.
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Closure Properties — An Application

8. Let L8 = {ω ∈ Σ⋆ | 101 is a substring of ω}. Then L8 is a

regular language — by closure under concatenation —

because L7 and L3 are regular languages, and L8 = L7 ◦L3.

9. Finally, consider (once again) the language

L = {ω ∈ Σ⋆ | either 11 or 101 (or both) is a substring of ω}.

L is a regular language — by closure under union —

since L5 and L8 are regular languages, and L = L5 ∪ L8.
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Regular Expressions and Their Languages

Regular Expressions over an alphabet Σ are strings of

symbols — where the symbols that can appear in these

regular expressions can include every symbol in Σ, along with a

small set of additional symbols. These — and their languages

(all subsets of Σ⋆ to which they correspond — will now be

described.

• Regular expressions are used for searching and updating

information in text editors, word processors, data base

software, and internet access. Supplemental material,

concerning the use of regular expressions in software

applications, is available.



Regular Operations Closure Properties Regular Expressions

Regular Expressions and Their Languages:

Informal Introduction

If σ ∈ Σ then (the string) σ is also a regular expression (over the

alphabet Σ).

• Examples: If Σ = {a,b,c} then each of the following is a
regular expression over the alphabet Σ:

• a

• b

• c

• The language of the regular expression σ (for σ ∈ Σ) is the

set {σ}. This is a regular language since it is the language

of the NFA

q0start q1
σ
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Regular Expressions and Their Languages:

Informal Introduction

λ is a regular expression (over every alphabet Σ).

• The language of the regular expression λ is the set {λ}.

This is a regular language since it is the language of the

NFA

q0start
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Regular Expressions and Their Languages:

Informal Introduction

∅ is a regular expression (over every alphabet Σ).

• The language of the regular expression ∅ is the empty set

∅. This is a regular language since it is the language of the

NFA

q0start
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Regular Expressions and Their Languages:

Informal Introduction

Σ is a regular expression (over the alphabet Σ).

• The language of the regular expression Σ is the set Σ —

that is, the set of all strings over this alphabet with length

one. This is a regular language since it is the language of

the NFA that looks like the following, if Σ = {σ1, σ2, . . . , σn}.

q0start q1

σ1, σ2, . . . , σn
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Regular Expressions and Their Languages:

Informal Introduction

If R1 and R2 are regular expressions over the alphabet Σ then

the string

(R1 ∪ R2)

is a regular expression over the alphabet Σ as well.

• If ω = (R1 ∪ R2) then the language L(ω) of ω is the union of

the languages of R1 and R2 — that is,

L(ω) = L(R1) ∪ L(R2).

• Recall that the set of regular languages is closed under

union (by Theorem #1(a), above). Thus, if ω = (R1 ∪ R2)
and the languages L(R1) and L(R2) are both regular

languages, then L(ω) is a regular language too.
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Regular Expressions and Their Languages:

Informal Introduction

If R1 and R2 are regular expressions over the alphabet Σ then

the string

(R1 ◦ R2)

is a regular expression over the alphabet Σ as well.

• If ω = (R1 ◦ R2) then the language L(ω) of ω is the

concatenation of the languages of R1 and R2 — that is,

L(ω) = L(R1)◦L(R2) = {ω1·ω2 | ω1 ∈ L(R1) and ω2 ∈ L(R2)}.

• Recall that the set of regular languages is closed under

concatenation (by Theorem #1(b), above). Thus, if

ω = (R1 ◦ R2) and the languages L(R1) and L(R2) are both

regular languages, then L(ω) is a regular language too.
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Regular Expressions and Their Languages:

Informal Introduction

If R1 is a regular expression over the alphabet Σ then the string

(R1)
⋆

is a regular expression over the alphabet Σ as well.

• If ω = (R1)
⋆ then the language L(ω) of ω is the star of the

language of R1 — that is

L(ω) = (L(R1))
⋆ = {ω1 · ω2 . . . ωk |

k ≥ 0 and ω1, ω2, . . . , ωk ∈ L(R1)}.

• Recall that the set of regular languages is closed under

star (by Theorem #1(c), above). Thus, if ω = (R1)
⋆ and the

language L(R1) of R1 is a regular language, then L(ω) is a

regular language too.
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Regular Expressions and Their Languages:

Making Things More Formal

• To keep things simple we will generally restrict attention to

regular expressions over alphabets, Σ, that do not include

any of the symbols

λ, ∅,Σ, (, ),∪, ◦, ⋆

• For any such alphabet Σ, a “regular expression over Σ” can

be defined as a string over Σ̂⋆, for

Σ̂ = Σ ∪ {λ, ∅,Σ, (, ),∪, ◦, ⋆}.
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Regular Expressions:

Recursive Definition

Regular expressions are defined more formally, using a

recursive definition, as follows.

Definition: Let Σ be an alphabet that does not include any of

the symbols “λ”, “∅”, “Σ”, “(”, “)”, “∪”, “◦” or “⋆”, and let

Σ̂ = Σ ∪ {λ, ∅,Σ, (, ),∪, ◦, ⋆}.

Then a string of symbols ω ∈ Σ̂⋆ is a regular expression

over Σ if and only if it can be formed using a finite number of

applications of the rules shown on the next two slides.
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Regular Expressions:

Recursive Definition

Base Cases:

1. ω = σ, for some symbol σ ∈ Σ.

2. ω = λ.

3. ω = ∅.

4. ω = Σ.
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Regular Expressions:

Recursive Definition

Additional (Recursive) Cases:

5. If R1 and R2 are both regular expressions over

the alphabet Σ — and ω is the string (R1 ∪ R2) —

then ω is regular expression over the alphabet Σ
as well.

6. If R1 and R2 are both regular expressions over

the alphabet Σ — and ω is the string (R1 ◦ R2) —

then ω is regular expression over the alphabet Σ
as well.

7. If R1 is a regular expression over the alphabet Σ
— and ω is the string (R1)

⋆ — then ω is a regular

expression over the alphabet Σ as well.
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The Language of a Regular Expression:

Recursive Definition

Definition: If ω is a regular expression for the alphabet Σ then

the language L(ω) of ω is as shown below, and on the following

slide.

Base Cases:

1. If ω = σ, for σ ∈ Σ, then L(ω) = L(σ) = {σ}.

2. If ω = λ then L(ω) = L(λ) = {λ}.

3. If ω = ∅ then L(ω) = L(∅) = ∅.

4. If ω = Σ then L(ω) = L(Σ) = Σ (the set of all

strings in Σ⋆ with length one).
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The Language of a Regular Expression:

Recursive Definition

Additional (Recursive) Cases:

5. If ω is the string (R1 ∪ R2) — where R1 and R2

are regular expressions over Σ — then the

language L(ω) of ω is the set L(R1) ∪ L(R2).
6. If ω is the string (R1 ◦ R2) — where R1 and R2 are

regular expressions over Σ — then the

language L(ω) of ω is the set L(R1) ◦ L(R2).
7. If ω is the string (R1)

⋆ — where R1 is a regular

expression over Σ — then the language L(ω) of ω

is the set (L(R1))
⋆.
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Regular Expressions and Their Languages:

Problems To Be Solved

Two problems concerning regular expressions, which students

might be asked to solve — for reasonably short and simple

regular expressions over an alphabet Σ, are as follows.

1. Given a string ω ∈ Σ̂⋆, for Σ̂ as above, decide whether ω is

a regular expression over Σ — and, if it is, describe how it

can be produced using the rules that are given in the

recursive definition of a “regular expression over Σ”.

2. Given a regular expression ω over Σ, describe the

language of ω — including enough information for a reader

to be able to confirm that your answer is correct.
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Regular Expressions and Their Languages:

Problems To Be Solved

• One way to solve the first problem — in the case that the

given string, ω, is a regular expression over Σ — is to give

a sequence of applications of the rules, included in the

definition of a “regular expression”, to show how ω can be

obtained.

• The second problem can then be solved, as well, by

describing the languages of the regular expressions that

are generated, along the way.
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Regular Expressions and Their Languages:

Problems To Be Solved

Example: Let Σ = {0, 1} and consider the following string ω:

(((((Σ)⋆ ◦ 1) ◦ (λ ∪ 0)) ◦ 1) ◦ (Σ)⋆)

1. By rule #4, Σ is a regular expression over Σ whose

language is Σ = {0, 1}.

2. By rule #7 — and considering the regular expression at

line 1 — (Σ)⋆ is a regular expression over Σ whose

language is (Σ)⋆ = Σ⋆ — the set of all strings over the

alphabet Σ.

3. Since 1 ∈ Σ, by rule #1, 1 is a regular expression over Σ
whose language is {1}.
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Regular Expressions and Their Languages:

Problems To Be Solved

4. By rule #6 — and considering the regular expressions at

lines 2 and 3 — ((Σ)⋆ ◦ 1) is a regular expression over Σ
whose language is

Σ⋆ ◦ {1} = {ω ∈ Σ⋆ | ω ends with 1}.

5. By rule #2, λ is a regular expression over Σ whose

language is {λ}.

6. Since 0 ∈ Σ, by rule #1, 0 is a regular expression over Σ
whose language is {0}.

7. By rule #5 — and considering the regular expressions at

lines #5 and #6 — (λ ∪ 0) is a regular expression over Σ
whose language is {λ} ∪ {0} = {λ, 0}.
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Regular Expressions and Their Languages:

Problems To Be Solved
8. By rule #6 – and considering the regular expressions at

lines #4 and #7 —

(((Σ)⋆ ◦ 1) ◦ (λ ∪ 0))

is a regular expression over Σ whose language is

{ω ∈ Σ⋆ | ω ends with 1} ◦ {λ, 0}

= {ω ∈ Σ⋆ | either ω ends with 1 or ω ends with 10}.

9. By rule #6 — and considering the regular expressions at

lines #8 and #3 —

((((Σ)⋆ ◦ 1) ◦ (λ ∪ 0)) ◦ 1)

is a regular expression over Σ whose language is

{ω ∈ Σ⋆ | either ω ends with 1 or ω ends with 10} ◦ {1}

= {ω ∈ Σ⋆ | either ω ends with 11 or ω ends with 101}.
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Regular Expressions and Their Languages:

Problems To Be Solved

10. By rule #6 — and considering the regular expressions at

lines #9 and #2 —

(((((Σ)⋆ ◦ 1) ◦ (λ ∪ 0)) ◦ 1) ◦ (Σ)⋆)

is a regular expression over Σ. With a little bit of work its

language can be shown to be

{ω ∈ Σ⋆ | either 11 or 101 (or both) is a substring of ω}
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Regular Expressions and Their Languages:

Problems To Be Solved

Another problem, concerning regular expression, is as follows.

3. Given a languges L ⊆ Σ⋆, find a regular expression, ω,

over Σ whose language is L.

This problem can sometimes be solved by working from the top

down — expression the given language as the union,

concatenation or Kleene star of other, simpler languages, and

then showing that each of these languages is the language of a

regular expression.

The result described next —- and its proof — gives another way

to try to solve this kind of problem.
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Regular Expressions and Regular Languages:

Equivalence

Theorem 2. Let Σ be an alphabet. Then a language L ⊆ Σ⋆ is

a regular language if and only if L is the language of a regular

expression for Σ.

• The proof of Theorem #2 (provided for this course) is also

a constructive proof. That is, provides an algorithm that

receives a regular expression for Σ and produces a

nondeterministic finite automaton, with alphabet Σ, that

has the same language. It also provides an algorithm that

receives a nondeterministic finite automaton with

alphabet Σ, as input, and produces a regular expression

for Σ with the same language.

• The proof of this result is given — for interested students

— in a supplemental document.
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Regular Expressions and Regular Languages:

There is Lots More!

• Regular expressions have a variety of applications of

applications in text processing and data science.

• Software that processes regular expressions is, therefore,

important.

• Versions of regular expressions that can be used in

computer programs are important too.

• Additional supplemental documents, with more information

about this, will also be available.
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