Lecture #7: Regular Expressions and Regular Operations Lecture Presentation

The following definitions were given in the lecture notes. They will be useful when solving problems that concern regular expressions.

Definition: A string of symbols ω is a **regular expression** for the alphabet Σ if and only if it can be formed using a finite number of applications of the following rules.

- 1. $\omega = \sigma$, for some symbol $\sigma \in \Sigma$.
- 2. $\omega = \lambda$.
- 3. $\omega = \emptyset$.
- 4. $\omega = \Sigma$.
- 5. If R_1 and R_2 are both regular expressions over the alphabet Σ , and ω is the string $(R_1 \cup R_2)$, then ω is regular expression over the alphabet Σ as well.
- 6. If R_1 and R_2 are both regular expressions over the alphabet Σ , and ω is the string $(R_1 \circ R_2)$, then ω is regular expression over the alphabet Σ as well.
- 7. If R_1 is a regular expression over the alphabet Σ , and ω is the string $(R_1)^*$, then ω is a regular expression over the alphabet Σ as well.

Definition: If ω is a regular expression for the alphabet Σ then the **language** $L(\omega)$ of ω is as follows.

- 1. If $\omega = \sigma$, for $\sigma \in \Sigma$, then $L(\omega) = L(\sigma) = \{\sigma\}$.
- 2. If $\omega = \lambda$ then $L(\omega) = L(\lambda) = \{\lambda\}$.
- 3. If $\omega = \emptyset$ then $L(\omega) = L(\emptyset) = \emptyset$.
- 4. If $\omega = \Sigma$ then $L(\omega) = L(\Sigma) = \Sigma$ (the set of all strings in Σ^* with length one).
- 5. If ω is the string $(R_1 \cup R_2)$ where R_1 and R_2 are regular expressions over Σ then the language $L(\omega)$ of ω is the set $L(R_1) \cup L(R_2)$.
- 6. If ω is the string $(R_1 \circ R_2)$ where R_1 and R_2 are regular expressions over Σ then the language $L(\omega)$ of ω is the set $L(R_1) \circ L(R_2)$.
- 7. If ω is the string $(R_1)^*$ where R_1 is a regular expression over Σ then the language $L(\omega)$ of ω is the set $(L(R_1))^*$.

Interpretation of Regular Expressions

Consider the following regular expression, ω , over the alphabet $\Sigma = \{a, b, c\}$:

$$\omega = \left(\left(\left((\Sigma)^{\star} \circ \mathbf{a} \right) \circ (\Sigma)^{\star} \right) \circ \left(\mathbf{a} \circ (\Sigma)^{\star} \right) \right)$$

Note that $\omega = (\omega_1 \circ \omega_2)$ where

$$\omega_1 = (((\Sigma)^* \circ a) \circ (\Sigma)^*)$$
 and $\omega_2 = (a \circ (\Sigma)^*).$

If ω_1 and ω_2 are regular expressions over Σ , then it follows by part 6, of the definition of a regular expression over Σ , that ω is are regular expression over Σ as well.

In order to *confirm that* ω *is a a regular expression over* Σ , we might proceed as follows:

Now recall that

- (a) Σ is, by definition, a regular expression over Σ , and the *language* $L(\Sigma)$ of this regular expression is the *language* (that is, *set*) $\Sigma = \{a, b, c\}$.
- (b) $(\Sigma)^*$ is a regular expression over Σ , since Σ is, and the *language* of $(\Sigma)^*$ is the Kleene star of the language of Σ . This is the Kleene star of the set $\Sigma = \{a, b, c\}$, that is, the set (which we already call Σ^*) of all strings over the alphabet $\Sigma = \{a, b, c\}$.

We might continue, as follows, in order to *identify the language of the regular expression* ω :

Development of Regular Expressions

Once again, let $\Sigma = \{a, b, c\}$ and consider the language $L \subseteq \Sigma^*$ the includes all strings over Σ with an even number of copies of "a" — that is,

$$L = \{\mu \in \Sigma^* \mid \text{the number of copies of "a" in } \mu \text{ is divisible by } 2\}.$$

Suppose that we want to *discover a regular expression* ω *over* Σ *such that* $L(\omega) = L$.

- It can be helpful to *examine the description of the language* (rephrasing it, if needed, as long you do not change its meaning) to try to identify *simpler languages that can be used to produce the desired one, using one of the regular operations*.
- Notice that another way to write that "the number of copies of 'a' in ω is divisible by 2" is to write that "for some non-negative integer k,

$$\mu = \mu_0 \circ (\mu_1 \cdot \mu_2 \cdot \dots \cdot \mu_k)$$

where μ is some string in Σ^* that does not include any copies of 'a', and $\mu_1, \mu_2, \ldots, \mu_k$ are all strings in Σ^* that include exactly two copies of 'a' ".

In other words, $L = \tilde{L} \circ (\hat{L})^*$, where \tilde{L} is the set of strings in Σ^* that do not include any copies of "a", and \hat{L} is the set of strings in Σ^* that include exactly two copies of "a".

It follows that if $\widetilde{\omega}$ and $\widehat{\omega}$ are regular expressions over Σ such that $\widetilde{\omega} = \widetilde{L}$ and $L(\widehat{\omega}) = \widehat{L}$, and we set ω to be $(\widetilde{\omega} \circ (\widehat{\omega})^*)$, then ω is a regular expression over Σ such that

$$L(\omega) = L(\widetilde{\omega}) \circ (L(\widehat{\omega}))^* = \widetilde{L} \circ (\widehat{L})^* = L,$$

as desired. We have now identified two (one hopes, simpler) goals: Discover a regular expression $\tilde{\omega}$ over Σ whose language is the language

 $\widetilde{L} = \{\mu \in \Sigma^* \mid \text{there are no copies of "a" in } \mu\},\$

and discover a regular expression $\widehat{\omega}$ over Σ whose language is the language

 $\widehat{L} = \{ \mu \in \Sigma^* \mid \text{there are exactly two copies of "a" in } \mu \}.$

This process could proceed as follows: