Lecture #7: Regular Expressions and Regular Operations Lecture Presentation

The following definitions were given in the lecture notes. They will be useful when solving problems that concern regular expressions.

Definition: A string of symbols ω is a *regular expression* for the alphabet Σ if and only if it can be formed using a finite number of applications of the following rules.

- 1. $\omega = \sigma$, for some symbol $\sigma \in \Sigma$.
- 2. $\omega = \lambda$.
- 3. $\omega = \emptyset$.
- 4. $\omega = \Sigma$.
- 5. If R_1 and R_2 are both regular expressions over the alphabet Σ , and ω is the string $(R_1 \cup R_2)$, then ω is regular expression over the alphabet Σ as well.
- 6. If R_1 and R_2 are both regular expressions over the alphabet Σ , and ω is the string $(R_1 \circ R_2)$, then ω is regular expression over the alphabet Σ as well.
- 7. If R_1 is a regular expression over the alphabet Σ , and ω is the string $(R_1)^{\star}$, then ω is a regular expression over the alphabet Σ as well.

Definition: If ω is a regular expression for the alphabet Σ then the *language* $L(\omega)$ of ω is as follows.

- 1. If $\omega = \sigma$, for $\sigma \in \Sigma$, then $L(\omega) = L(\sigma) = {\sigma}$.
- 2. If $\omega = \lambda$ then $L(\omega) = L(\lambda) = {\lambda}.$
- 3. If $\omega = \emptyset$ then $L(\omega) = L(\emptyset) = \emptyset$.
- 4. If $\omega = \Sigma$ then $L(\omega) = L(\Sigma) = \Sigma$ (the set of all strings in Σ^* with length one).
- 5. If ω is the string $(R_1 \cup R_2)$ where R_1 and R_2 are regular expressions over Σ then the language $L(\omega)$ of ω is the set $L(R_1) \cup L(R_2)$.
- 6. If ω is the string $(R_1 \circ R_2)$ where R_1 and R_2 are regular expressions over Σ then the language $L(\omega)$ of ω is the set $L(R_1) \circ L(R_2)$.
- 7. If ω is the string $(R_1)^*$ where R_1 is a regular expression over Σ then the language $L(\omega)$ of ω is the set $(L(R_1))^*$.

Interpretation of Regular Expressions

Consider the following regular expression, ω , over the alphabet $\Sigma = \{a, b, c\}$:

$$
\omega = ((((\Sigma)^{\star} \circ a) \circ (\Sigma)^{\star}) \circ (a \circ (\Sigma)^{\star}))
$$

Note that $\omega = (\omega_1 \circ \omega_2)$ where

$$
\omega_1 = (((\Sigma)^{\star} \circ \mathbf{a}) \circ (\Sigma)^{\star}) \qquad \text{and} \qquad \omega_2 = (\mathbf{a} \circ (\Sigma)^{\star}).
$$

If ω_1 and ω_2 are regular expressions over Σ , then it follows by part 6, of the definition of a regular expression over Σ , that ω is are regular expression over Σ as well.

In order to **confirm that** ω **is a a regular expression over** Σ , we might proceed as follows:

Now recall that

- (a) Σ is, by definition, a regular expression over Σ, and the *language* L(Σ) of this regular expression is the *language* (that is, *set*) $\Sigma = \{a, b, c\}$.
- (b) $(\Sigma)^*$ is a regular expression over Σ , since Σ is, and the *language* of $(\Sigma)^*$ is the Kleene star of the language of Σ . This is the Kleene star of the set $\Sigma = \{a, b, c\}$, that is, the set (which we already call Σ^*) of all strings over the alphabet $\Sigma = \{a, b, c\}$.

We might continue, as follows, in order to *identify the language of the regular expression* ω*:*

Development of Regular Expressions

Once again, let $\Sigma = \{a, b, c\}$ and consider the language $L \subseteq \Sigma^\star$ the includes all strings over Σ with an even number of copies of "a" — that is,

$$
L = \{ \mu \in \Sigma^* \mid \text{the number of copies of "a" in } \mu \text{ is divisible by 2} \}.
$$

Suppose that we want to *discover a regular expression* ω over Σ such that $L(\omega) = L$.

- It can be helpful to *examine the description of the language* (rephrasing it, if needed, as long you do not change its meaning) to try to identify *simpler languages that can be used to produce the desired one, using one of the regular operations*.
- Notice that another way to write that "the number of copies of 'a' in ω is divisible by 2" is to write that "for some non-negative integer k ,

$$
\mu = \mu_0 \circ (\mu_1 \cdot \mu_2 \cdot \cdots \cdot \mu_k)
$$

where μ is some string in Σ^{\star} that does not include any copies of 'a', and $\mu_1, \mu_2, \ldots, \mu_k$ are all strings in Σ^{\star} that include exactly two copies of 'a' ".

In other words, $L = \widetilde{L} \circ (\widehat{L})^\star,$ where \widetilde{L} is the set of strings in Σ^\star that do not include any copies of "a", and \widehat{L} is the set of strings in Σ^* that include exactly two copies of "a".

It follows that if $\tilde{\omega}$ and $\hat{\omega}$ are regular expressions over Σ such that $\tilde{\omega} = \tilde{L}$ and $L(\hat{\omega}) = \hat{L}$, and we set ω to be $(\widetilde\omega\circ(\widehat\omega)^\star),$ then ω is a regular expression over Σ such that

$$
L(\omega) = L(\widetilde{\omega}) \circ (L(\widehat{\omega}))^* = \widetilde{L} \circ (\widehat{L})^* = L,
$$

as desired. We have now identified two (one hopes, simpler) goals: Discover a regular expression $\tilde{\omega}$ over Σ whose language is the language

 $\widetilde{L} = \{\mu \in \Sigma^{\star} \mid \text{there are no copies of ``a'' in } \mu\},$

and discover a regular expression $\widehat{\omega}$ over Σ whose language is the language

 $\widehat{L} = \{\mu \in \Sigma^{\star} \mid \text{there are exactly two copies of ``a'' in } \mu\}.$

This process could proceed as follows: