
Lecture #7: Regular Expressions and Regular Operations

Lecture Presentation

The following definitions were given in the lecture notes. They will be useful when solving

problems that concern regular expressions.

Definition: A string of symbols ω is a regular expression for the alphabet Σ if and only if it

can be formed using a finite number of applications of the following rules.

1. ω = σ, for some symbol σ ∈ Σ.

2. ω = λ.

3. ω = ∅.

4. ω = Σ.

5. If R1 and R2 are both regular expressions over the alphabet Σ, and ω is the string

(R1 ∪R2), then ω is regular expression over the alphabet Σ as well.

6. If R1 and R2 are both regular expressions over the alphabet Σ, and ω is the string

(R1 ◦R2), then ω is regular expression over the alphabet Σ as well.

7. If R1 is a regular expression over the alphabet Σ, and ω is the string (R1)
⋆, then ω is a

regular expression over the alphabet Σ as well.

Definition: If ω is a regular expression for the alphabet Σ then the language L(ω) of ω is as

follows.

1. If ω = σ, for σ ∈ Σ, then L(ω) = L(σ) = {σ}.

2. If ω = λ then L(ω) = L(λ) = {λ}.

3. If ω = ∅ then L(ω) = L(∅) = ∅.

4. If ω = Σ then L(ω) = L(Σ) = Σ (the set of all strings in Σ⋆ with length one).

5. If ω is the string (R1 ∪ R2) where R1 and R2 are regular expressions over Σ then the

language L(ω) of ω is the set L(R1) ∪ L(R2).

6. If ω is the string (R1 ◦ R2) where R1 and R2 are regular expressions over Σ then the

language L(ω) of ω is the set L(R1) ◦ L(R2).

7. If ω is the string (R1)
⋆ where R1 is a regular expression over Σ then the language L(ω)

of ω is the set (L(R1))
⋆.

1



Interpretation of Regular Expressions

Consider the following regular expression, ω, over the alphabet Σ = {a,b,c}:

ω = ((((Σ)⋆ ◦ a) ◦ (Σ)⋆) ◦ (a ◦ (Σ)⋆))

Note that ω = (ω1 ◦ ω2) where

ω1 = (((Σ)⋆ ◦ a) ◦ (Σ)⋆) and ω2 = (a ◦ (Σ)⋆).

If ω1 and ω2 are regular expressions over Σ, then it follows by part 6, of the definition of a

regular expression over Σ, that ω is are regular expression over Σ as well.

In order to confirm that ω is a a regular expression over Σ, we might proceed as follows:





Now recall that

(a) Σ is, by definition, a regular expression over Σ, and the language L(Σ) of this regular

expression is the language (that is, set) Σ = {a,b,c}.

(b) (Σ)⋆ is a regular expression over Σ, since Σ is, and the language of (Σ)⋆ is the Kleene

star of the language of Σ. This is the Kleene star of the set Σ = {a,b,c}, that is, the set

(which we already call Σ⋆) of all strings over the alphabet Σ = {a,b,c}.

We might continue, as follows, in order to identify the language of the regular expres-

sion ω:





Development of Regular Expressions

Once again, let Σ = {a,b,c} and consider the language L ⊆ Σ⋆ the includes all strings over Σ
with an even number of copies of “a” — that is,

L = {µ ∈ Σ⋆ | the number of copies of “a” in µ is divisible by 2}.

Suppose that we want to discover a regular expression ω over Σ such that L(ω) = L.

• It can be helpful to examine the description of the language (rephrasing it, if needed,

as long you do not change its meaning) to try to identify simpler languages that can be

used to produce the desired one, using one of the regular operations.

• Notice that another way to write that “the number of copies of ‘a’ in ω is divisible by 2” is

to write that “for some non-negative integer k,

µ = µ0 ◦ (µ1 · µ2 · · · · · µk)

where µ is some string in Σ⋆ that does not include any copies of ‘a’, and µ1, µ2, . . . , µk

are all strings in Σ⋆ that include exactly two copies of ‘a’ ”.

In other words, L = L̃ ◦ (L̂)⋆, where L̃ is the set of strings in Σ⋆ that do not include any

copies of “a”, and L̂ is the set of strings in Σ⋆ that include exactly two copies of “a”.

It follows that if ω̃ and ω̂ are regular expressions over Σ such that ω̃ = L̃ and L(ω̂) = L̂,

and we set ω to be (ω̃ ◦ (ω̂)⋆), then ω is a regular expression over Σ such that

L(ω) = L(ω̃) ◦ (L(ω̂))⋆ = L̃ ◦ (L̂)⋆ = L,

as desired. We have now identified two (one hopes, simpler) goals: Discover a regular

expression ω̃ over Σ whose language is the language

L̃ = {µ ∈ Σ⋆ | there are no copies of “a” in µ},

and discover a regular expression ω̂ over Σ whose language is the language

L̂ = {µ ∈ Σ⋆ | there are exactly two copies of “a” in µ}.

This process could proceed as follows:




