Lecture #7: Regular Operations and Closure Properties of Regular Language

Proofs of Closure Properties

Introduction

This document provides a proof of the following result — which was stated, but not proved, in the notes for Lecture #7.

Theorem 1. Let Σ be an alphabet, and let $A, B \subseteq \Sigma^*$.

- *(a) If* A *and* B *are regular languages then* A ∪ B *is a regular language, as well.*
- *(b) If* A *and* B *are regular languages, then* A B *is a regular language, as well.*
- *(c)* If A is a regular language then A^* is a regular language as well.

A Useful Minor Result

The following minor result will be repeatedly of use when developing a proof of the above claim.

Lemma 2. Let Σ be an alphabet, and let $L \subseteq \Sigma^*$. Then L is a regular language if and only if L *is the language* $L(M)$ *of some nondeterministic finite automaton* $M = (Q, \Sigma, \delta, q_0, F)$ which *satisfies the following properties.*

- *(a) There are no transitions into* q_0 , at all. That is, $q_0 \notin \delta(q, \sigma)$ *for any state* $q \in Q$ *or any symbol* $\sigma \in \Sigma_\lambda$, so that the only string $\omega \in \Sigma^\star$ such that $q_0 \in \delta^\star(q_0, \omega)$ is the empty string, $\omega = \lambda$.
- *(b)* M has exactly one accepting state, q_F , and there are no transitions out of this state. That *is,* $F = \{q_F\}$ *and* $\delta(q_F, \sigma) = \emptyset$ *for every symbol* $\sigma \in \Sigma_{\lambda}$ *.*

Sketch of Proof. Suppose, first, that L is the language $L(M)$ of some nondeterministic finite automaton $M = (Q, \Sigma, \delta, q_0, F)$ which satisfies properties (i) and (ii), above. Then, since M

is a nondeterministic finite automaton, it follows by the results in established in Lecture #6 that L is the language of some deterministic finite automaton as well — that is, L is a regular language.

Suppose, next, that L is a regular language. Then — once again, by the results established in Lecture #6 — $L = L(M)$ for some nondeterministic finite automaton

$$
\widehat{M} = (\widehat{Q}, \Sigma, \widehat{\delta}, \widehat{q}_0, \widehat{F}).
$$

Renaming the states in \widehat{Q} if necessary, we may assume without loss of generality that \widehat{Q} does not include states called either q_0 or q_F .

Consider an NFA $M = (Q, \Sigma, \delta, q_0, F)$ such that the following properties are satisfied.

- $Q = \widehat{Q} \cup \{q_0, q_F\}$ that is, we have added states q_0 and q_F to the set of states of \widehat{M} .
- The only transition out of the new start state, q_0 , is a λ -transition to the old start state \widehat{q}_0 of M. That is, $\delta(q_0, \lambda) = \{\widehat{q}_0\}$ and $\delta(q_0, \sigma) = \emptyset$ for every symbol $\sigma \in \Sigma$.
- Transitions for the states in \widehat{Q} are unchanged except that a λ -transition is added from each state in \widehat{F} to the new state q_F . That is, $\delta(q, \sigma) = \widehat{\delta}(q, \sigma)$ for every state $q \in \widehat{Q}$ and symbol $\sigma \in \Sigma$, while if $q \in \widehat{Q}$ then

$$
\delta(q,\lambda)=\begin{cases}\widehat{\delta}(q,\lambda)\cup\{q_F\} &\text{if }q\in\widehat{F},\\ \widehat{\delta}(q,\lambda) &\text{if }q\notin\widehat{F}.\end{cases}
$$

• q_F is the only accepting state of M — that is, $F = \{q_F\}$ — and there are no transitions out of q_F . That is, $\delta(q_F, \sigma) = \emptyset$ for all $\sigma \in \Sigma_{\lambda}$.

Using the above rules, the following properties about λ*-closures of states* are easily established.

- If $\lambda \notin L$ then the λ -closure of the new start state q_0 in M is the union of $\{q_0\}$ and the λ -closure of the old start state, \widehat{q}_0 , in \widehat{M} .
- On the other hand, if $\lambda \in L$ then the λ -closure of the new start state q_0 in M is the union of $\{q_0, q_F\}$ and the λ -closure of the old start state, \widehat{q}_0 , in \widehat{M} .
- For every state $q \in \widehat{Q}$, if the λ -closure of q in \widehat{M} does not include any accepting states (that is, states in F), then the λ -closure of q in M is the same set as the λ -closure of q in \overline{M} .
- For every state $q \in \widehat{Q}$, if the λ -closure of q in \widehat{M} *does* include at least one accepting state, then the λ -closure of q in M is the union of the λ -closure of q in M and the set $\{q_F\}$.

• The λ -closure of the new accepting state q_F in M is the set $\{q_F\}$

It follows by the above that

$$
\delta^{\star}(q_0,\lambda)=\begin{cases} \{q_0,q_F\}\cup\widehat{\delta}^{\star}(\widehat{q}_0,\lambda) & \text{if }\lambda\in L,\\ \{q_0\}\cup\widehat{\delta}^{\star}(\widehat{q}_0,\lambda) & \text{if }\lambda\notin L,\end{cases}
$$

so that $\lambda \in L(M)$ if and only if $\lambda \in L(\widehat{M})$. Furthermore, it can also be proved (by induction¹ on the length of the string ω) that if $\omega \in \Sigma$ is a *non-empty* string then

$$
\delta^{\star}(q_0,\omega) = \begin{cases} \widehat{\delta}^{\star}(\widehat{q}_0,\omega) \cup \{q_F\} & \text{if } \omega \in L, \\ \widehat{\delta}^{\star}(\widehat{q}_0,\omega) & \text{if } \omega \notin L. \end{cases}
$$

Thus $\omega \in L(M)$ if and only if $\omega \in L(\widehat{M})$ as well.

It follows that $L(M) = L(\widehat{M}) = L$ and, since M is a nondeterministic finite automaton that satisfies properties (a) and (b), above, this establishes the claim. satisfies properties (a) and (b), above, this establishes the claim.

Establishing Closure Under Union

Lemma 3. Let Σ be an alphabet and let $L_1, L_2 \subseteq \Sigma^*$. If L_1 and L_2 are both regular languages *then* $L_1 \cup L_2$ *is a regular language as well.*

Sketch of Proof. Let Σ be an alphabet, let $L_1, L_2 \subseteq \Sigma^*$, and suppose that the languages L_1 and L_2 are both regular. Then there exist nondeterministic finite automata

$$
M_1 = \{Q_1, \Sigma, \delta_1, q_{1,0}, F_1\} \quad \text{and} \quad M_2 = \{Q_2, \Sigma, \delta_2, q_{2,0}, F_2\}
$$

such that $L(M_1) = L_1$, $L(M_2) = L_2$, and these nondeterministic finite automata have all the properties described in Lemma 2 — so that, in particular, $F_1 = \{q_{1,F}\}$ for some state $q_{1,F} \in Q_1$ and $F_2 = \{q_{2,F}\}\$ for some state $q_{2,F} \in Q_2$. Renaming states as needed we may assume that $Q_1 \cap Q_2 = \emptyset$ and that $q_0 \notin Q_1$ and $q_0 \notin Q_2$.

Now consider a nondeterministic finite automaton

$$
M = (Q, \Sigma, \delta, q_0, F)
$$

that has M_1 and M_2 as components and whose structure is as shown in Figure 1 on page 4. That is,

$$
Q = \{q_0\} \cup Q_1 \cup Q_2,
$$

¹This proof, and other proofs by induction mentioned in this document, are left as exercises.

Figure 1: A Nondeterministic Finite Automaton with Language $L_1 \cup L_2$

the alphabet Σ is the same as for M_1 and M_2 , the new state, q_0 , is the start state,

$$
F = F_1 \cup F_2 = \{q_{1,F}, q_{2,F}\},\
$$

and the transition function $\delta: Q \times \Sigma_{\lambda} \to P(Q)$ is defined as follows.

• It is only possible to move from the new start state to one of the old start states, and no symbols are processed when doing this — so that

$$
\delta(q_0, \lambda) = \{q_{1,0}, q_{2,0}\}\
$$

and

$$
\delta(q_0, \sigma) = \emptyset \quad \text{for every symbol } \sigma \in \Sigma.
$$

• All transitions for states in Q_1 are the same in M as they were in M_1 . That is,

$$
\delta(q,\sigma)=\delta_1(q,\sigma) \quad \text{for every state } q\in Q_1 \text{ and for all } \sigma\in \Sigma_\lambda.
$$

• All transitions for states in Q_2 are the same in M as they were in M_2 . That is,

 $\delta(q,\sigma) = \delta_2(q,\sigma)$ for every state $q \in Q_2$ and for all $\sigma \in \Sigma_{\lambda}$.

This can be used to confirm that λ*-closures* in these automata are related as follows.

• The λ -closure of q in M is the union of $\{q_0\}$, the λ -closure of $q_{1,0}$ in M_1 , and the λ -closure of $q_{2,0}$ in M_2 .

- If $q \in Q_1$ (so that q is a state in the automaton M_1) then the λ -closure of q in M is the same set as the λ -closure of q in M_1 .
- If $q \in Q_2$ (so that q is a state in the automaton M_2) then the λ -closure of q in M is the same set as the λ -closure of q in M_2 .

It follows from the above that

$$
\delta^{\star}(q_0,\lambda) = \{q_0\} \cup \delta_1^{\star}(q_{1,0},\lambda) \cup \delta_2^{\star}(q_{2,0},\lambda).
$$

On the other hand, if ω is a non-empty string in Σ^{\star} then it can be proved, by induction on the length of ω , that

$$
\delta^{\star}(q_0,\omega)=\delta_1^{\star}(q_{1,0},\omega)\cup\delta_2^{\star}(q_{2,0},\omega).
$$

Now, since $F = F_1 \cup F_2$ (and $q_0 \notin F$) it immediately follows that if $\omega \in \Sigma^*$ then $\omega \in L(M)$ if and only if either $\omega \in L(M_1)$ or $\omega \in L(M_2)$ (or both). That is — since $L_1 = L(M_1)$ and $L_2 = L(M_2)$ —

$$
L(M) = L_1 \cup L_2.
$$

Since $L_1 \cup L_2$ is the language of a nondeterministic finite automaton it follows, by the results established in Lecture #6, that $L_1 \cup L_2$ is also the language of a *deterministic* finite automaton. That is, $L_1 \cup L_2$ is a regular language, as needed to establish the lemma. \Box

Establishing Closure Under Concatenation

Lemma 4. Let Σ be an alphabet and let $L_1, L_2 \subseteq \Sigma^*$. If L_1 and L_2 are both regular languages *then* $L_1 \circ L_2$ *is a regular language as well.*

Sketch of Proof. Let Σ be an alphabet, let $L_1, L_2 \subseteq \Sigma^*$, and suppose that the languages L_1 and L_2 are both regular. Then there exist nondeterministic finite automata

$$
M_1 = \{Q_1, \Sigma, \delta_1, q_{1,0}, F_1\} \text{ and } M_2 = \{Q_2, \Sigma, \delta_2, q_{2,0}, F_2\}
$$

such that $L(M_1) = L_1$, $L(M_2) = L_2$, and these nondeterministic finite automata have all the properties described in Lemma 2 — so that, in particular, $F_1 = \{q_{1,F}\}$ for some state $q_{1,F} \in Q_1$ and $F_2 = \{q_{2,F}\}\$ for some state $q_{2,F} \in Q_2$. Renaming states as needed we may assume that $Q_1 \cap Q_2 = \emptyset$ and that $q_0 \notin Q_1$ and $q_0 \notin Q_2$.

Now consider a nondeterministic finite automaton

$$
M = (Q, \Sigma, \delta, q_0, F)
$$

Figure 2: A Nondeterministic Finite Automaton with Language $L_1 \circ L_2$

that has M_1 and M_2 as components and whose structure is as shown in Figure 2, above. That is,

$$
Q = \{q_0\} \cup Q_1 \cup Q_2,
$$

the alphabet Σ is the same as for M_1 and M_2 , the new state, q_0 , is the start state,

$$
F = F_2 = \{q_{2,F}\},\
$$

and the transition function $\delta: Q \times \Sigma_{\lambda} \to P(Q)$ is defined as follows.

• It is only possible to move from the new start state to the start state for M_1 , and no symbols are processed when doing this — so that

$$
\delta(q_0, \lambda) = \{q_{1,0}\}\
$$

and

$$
\delta(q_0, \sigma) = \emptyset \quad \text{for every symbol } \sigma \in \Sigma.
$$

• For every state $q \in Q_1$ such that $q \neq q_{1,F}$ (so that q is not M_1 's accepting state)

$$
\delta(q,\sigma)=\delta_1(q,\sigma) \quad \text{for all } \sigma \in \Sigma_\lambda.
$$

• It is possible to move from M_1 's accepting state to M_2 's start state, and no symbols are processed when doing so, so that

$$
\delta(q_{1,F}, \lambda) = \{q_{2,0}\}
$$

and

$$
\delta(q_{1,F}, \sigma) = \emptyset \quad \text{for every symbol } \sigma \in \Sigma.
$$

• For every state $q \in Q_2$,

$$
\delta(q,\sigma)=\delta_2(q,\sigma) \quad \text{for all } \sigma\in\Sigma_\lambda.
$$

This can be used to confirm that λ*-closures* in these automata are related as follows.

• If $\lambda \in L_1$ (so that $q_{1,F}$ is in the λ -closure of $q_{1,0}$ in M_1) then the λ -closure of q_0 in M is the union of $\{q_0\}$, the λ -closure of $q_{1,0}$ in M_1 , and the λ -closure of $q_{2,0}$ in M_2 .

On the other hand, if $\lambda \notin L_1$, then the λ -closure of q_0 in M is the union of $\{q_0\}$ and the λ -closure of $q_{1,0}$ in M_1 .

• For every state $q \in Q_1$, if $q_{1,F}$ is in the λ -closure of q in M_1 , then the λ -closure of q in M is the union of the λ -closure of q in M_1 and the λ -closure of $q_{2,0}$ in M_2 .

On the other hand, if $q_{1,F}$ is *not* in the λ -closure of q in M_1 , then the λ -closure of q in M is the same set as the λ -closure of q in M_1 .

• For every state $q \in Q_2$, the λ -closure of q in M is the same set as the λ -closure of q in M_2 .

It follows from the above that

$$
\delta^{\star}(q_0,\lambda) = \begin{cases} \{q_0\} \cup \delta_1^{\star}(q_{1,0},\lambda) \cup \delta_2^{\star}(q_{2,0},\lambda) & \text{if } \lambda \in L_1, \\ \{q_0\} \cup \delta_1^{\star}(q_{1,0},\lambda) & \text{if } \lambda \notin L_1. \end{cases}
$$

The following properties can be established by induction on the length of the string, ω :

(a) For all states $r_1, r_2 \in Q_1$ and for every string $\omega \in \Sigma^*$,

 $r_2 \in \delta^{\star}(r_1,\omega)$ if and only if $r_2 \in \delta^{\star}(r_1,\omega)$.

(b) For every state $r_2 \in Q_1$ and for every string $\omega \in \Sigma^*$,

 $r_2 \in \delta^{\star}(q_0, \omega)$ if and only if $r_2 \in \delta_1^{\star}(q_{1,0}, \omega)$.

- (c) For all states $r_1\in Q_1$ and $r_2\in Q_2$, $r_2\in \delta^\star(r_1,\omega)$ if and only if there exist strings $\mu,\nu\in\Sigma^\star$ such that the following properties are satisfied.
	- i. $\omega = \mu \cdot \nu$.
	- ii. $q_{1,F} \in \delta_1^*(r_1,\mu)$.
	- iii. $r_2 \in \delta_2^*(q_{2,0}, \nu)$.
- (d) For every state $r_2 \in Q_2$, $r_2 \in \delta^*(q_0, \omega)$ if and only if there exist strings $\mu, \nu \in \Sigma^*$ such that the following properties are satisfied.
	- i. $\omega = \mu \cdot \nu$.
	- ii. $\mu \in L_1$ so that $q_{1,F} \in \delta_1^*(q_{1,0}, \mu)$.

iii. $r_2 \in \delta_2^*(q_{2,0}, \nu)$.

(e) For all states $r_1 \in Q_2$ and $r_2 \in Q$,

 $r_2 \in \delta^{\star}(r_1,\omega)$ if and only if $r_2 \in Q_2$ and $r_2 \in \delta^{\star}_2(r_1,\omega)$.

Since $F = \{q_{2,0}\}\,$ it now follows by part (d), above, that — for every string $\omega \in \Sigma^\star$ — $\omega \in L(M)$ (that is, $q_{2,F} \in \delta^*(q_0,\omega)$ if and only if there exist strings $\mu,\nu \in \Sigma^*$ such that the following properties are satisfied

i.
$$
\omega \in \mu \cdot \nu
$$
.

ii. $\mu \in L_1$ — so that $q_{1,F} \in \delta_1^{\star}(q_{1,0}, \mu)$.

iii.
$$
q_{2,F} \in \delta_2^{\star}(q_2,\nu)
$$
 — so that $\nu \in L_2$.

That is, $L(M) = L_1 \circ L_2$.

Since $L_1 \circ L_2$ is the language of a nondeterministic finite automaton it follows, by the results established in Lecture #6, that $L_1 \circ L_2$ is also the language of a *deterministic* finite automaton. That is, $L_1 \circ L_2$ is a regular language, as needed to establish the lemma. \Box

Establishing Closure Under Kleene Star

Lemma 5. Let Σ be an alphabet and let $L \subseteq \Sigma^*$. If L is a regular language then L^* is a regular *language as well.*

Sketch of Proof. Let Σ be an alphabet, let $L \subseteq \Sigma^*$, and suppose that the language L is regular. Then there exists a nondeterministic finite automaton

$$
M_1 = \{Q_1, \Sigma, \delta_1, q_{1,0}, F_1\}
$$

such that $L(M_1) = L$, and this nondeterministic finite automaton has all the properties described in Lemma 2 — so that, in particular, $F_1 = \{q_{1,F}\}\$ for some state $q_{1,F} \in Q_1$. Renaming states as needed we may assume that $q_0 \notin Q_1$.

Now consider a nondeterministic finite automaton

$$
M = (Q, \Sigma, \delta, q_0, F)
$$

that has M_1 as a component and whose structure is as shown in Figure 3 on page 9. That is,

$$
Q = \{q_0\} \cup Q_1,
$$

Figure 3: A Nondeterministic Finite Automaton with Language L^*

the alphabet Σ is the same as for M_1 , the new state, q_0 , is the start state,

$$
F = \{q_0\},\
$$

and the transition function $\delta: Q \times \Sigma_{\lambda} \to P(Q)$ is defined as follows.

• It is only possible to move from q_0 to the start state, $q_{1,0}$, for M_1 , and no symbols are processed when doing this — so that

$$
\delta(q_0, \lambda) = \{q_{1,0}\}\
$$

and

$$
\delta(q_0, \sigma) = \emptyset \quad \text{for every symbol } \sigma \in \Sigma.
$$

• For every state $q \in Q_1$ such that $q \neq q_{1,F}$,

$$
\delta(q,\sigma)=\delta_1(q,\sigma) \quad \text{for all } \sigma \in \Sigma_\lambda.
$$

• It is only possible to move from $q_{1,F}$ to q_0 , and no symbols are processed when doing that, so that

$$
\delta(q_{1,F}, \lambda) = \{q_0\}
$$

and

$$
\delta(q_{1,F},\sigma)=\emptyset\quad\text{for every symbol }\sigma\in\Sigma.
$$

This can be used to confirm that λ -closures in these automata are related as follows.

• The λ -closure of q_0 in M is the union of $\{q_0\}$ and the λ -closure of $q_{1,0}$ in M_1 .

• For every state $q \in Q_1$, if $q_{1,F}$ belongs to the λ -closure of q in M_1 , then the λ -closure of q in M is the union of the λ -closure of q in M_1 , the set $\{q_0\}$, and the λ -closure of $q_{1,0}$ in M_1 .

On the other hand, if $q_{1,F}$ does not belong to the λ -closure of q in M_1 , then the λ -closure of q in M is the same set as the λ -closure of q in M_1 .

It follows from the above that

$$
\delta^{\star}(q_0,\lambda) = \{q_0\} \cup \delta^{\star}_1(q_{0,1},\lambda)
$$

— so that $\lambda \in L(M)$, since $q_0 \in F$.

The following properties are satisfied for every non-empty string $\omega \in \Sigma^{\star}$ — and can be proved by mathematical induction on the length of ω :

- (a) For every state $q \in Q_1$, $q \in \delta^{\star}(q_0, \omega)$ if and only if there exists an integer k such that $k \geq 0$, as well as strings $\mu_1, \mu_2, \ldots, \mu_k, \nu \in \Sigma^{\star}$, such that the following properties are satisfied.
	- i. μ_i is a non-empty string in $L=L(M_1)$ for every integer i such that $1\leq i\leq k.$ 2

ii.
$$
q \in \delta_1^*(q_{0,1}, \nu)
$$
.

- iii. $\omega = \mu_1 \cdot \mu_2 \dots \mu_k \cdot \nu$.
- (b) $q_0 \in \delta^*(q_0, \omega)$ so that $\omega \in L(M)$ if and only if there exists a *positive* integer k, as well as strings $\mu_1, \mu_2, \ldots, \mu_k \in \Sigma^\star$, such that the following properties are satisfied.
	- i. $\,\mu_i$ is a non-empty string in $L=L(M_1)$ for every integer i such that $1\leq i\leq k.$
	- ii. $\omega = \mu_1 \cdot \mu_2 \dots \mu_k$.

It follows by the above that $L(M) = (L(M_1))^* = L^*$.

Since L^* is the language of a nondeterministic finite automaton it follows, by the results established in Lecture #6, that \star is also the language of a *deterministic* finite automaton. That is, L^{\star} is a regular language, as needed to establish the lemma. \Box

Completion of the Proof

Proof of Theorem 1. Part (a) and (b) of the claim are implied by Lemmas 3 and 4, respectively, with languages L_1 and L_2 (in the lemmas) replaced by A and B, respectively. Part (c) of the claim is implied by Lemma 5, with language L (in the lemma) replaced by A . \Box

²Note that this part of the claim is trivially satisfied when $k = 0$ because it is "vacuous" (that is, empty) because there is no such integer i or string μ_i in this case, at all.