Lecture #6: Equivalence of Deterministic Finite Automata and Nondeterministic Finite Automata Questions for Review

- 1. Give a brief proof that if there exists a deterministic finite automaton $M = (Q, \Sigma, \delta, q_0, F)$ whose language is $L \subseteq \Sigma^*$, then there exists a **nondeterministic** finite automaton \widehat{M} whose language is L as well.
- 2. Suppose, instead, that you have been given a *nondeterministic* finite automaton $M = (Q, \Sigma, \delta, q_0, F)$ whose language is $L \subseteq \Sigma^*$ and that you wish to design a *deterministic* finite automaton $\widehat{M} = (\widehat{Q}, \Sigma, \widehat{\delta}, \widehat{q}_0, \widehat{F})$ whose language is L as well.
 - (a) What *information* must \widehat{M} remember in order to correctly decide whether a given string belongs to *L*? That is, what *information* needs to be considered and used in order to define the states in \widehat{Q} ?
 - (b) Describe a process that you can follow in order to use M to define both the set \widehat{Q} of states in \widehat{M} and the transition function $\widehat{\delta}$.
 - (c) Which state in \widehat{Q} should be the start state \widehat{q}_0 ? Why?
 - (d) How should be set \widehat{F} of accepting states in \widehat{M} be defined?
- 3. Suppose that |Q| = n for a positive integer n. How large might \widehat{Q} be, as a function of n?