
Lecture #6: Equivalence of Deterministic Finite Automata

and Nondeterministic Finite Automata

A Bad Case for the Subset Construction

Near the end of the lecture notes, it was claimed that there exists an infinite sequence of

languages

L1, L2, L3, · · · ⊆ Σ⋆

over the alphabet Σ = {0,1}, such that — for every positive integer k — Lk is the language

of a nondeterministic finite automaton with k+1 states. but such that every deterministic finite

automaton with language Lk must include at least 2k states.

This document — which is for interest only (and is certainly not required reading) — presents a

proof of this claim. It is based on material found in Section 2.3 of the text of Hopcroft, Motwani

and Ullman [1].

As above, let Σ = {0,1}, and let

L1 = {ω ∈ Σ⋆ | ω ends with a 1}

Then the following nondeterministic finite automaton has language L1:

q0start q1

0, 1

1

Languages L2, L3, L4, · · · ⊆ Σ⋆ can be “inductively defined” by setting

Lk+1 = {ω · σ | ω ∈ Lk and σ ∈ Σ}.

Then L2 includes all strings in Σ⋆ whose second-to-last symbol is 1... and so on.
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Now, the following NFA has language L2:

q0start q1 q2

0, 1

1 1, 0

Similarly, the following NFA has language L3:

q0start q1 q2 q3

0, 1

1 1, 0 1, 0

For k ≥ 1 consider an NFA Mk = (Qk,Σ, δk, Fk) where

• Qk = {q0, q1, q2, . . . , qk}, so that Mk has k + 1 states.

• δk(q0,0) = {q0}, δk(q0,1) = {q0, q1}, and δk(q0, λ) = ∅;

• For every integer j such that 1 ≤ j ≤ k − 1, δk(qj ,0) = δk(qj ,1) = {qj+1} and

δk(qj , λ) = ∅;

• δk(qk,0) = δk(qk,1) = δk(qk, λ) = ∅.

• Fk = {qk}

Note that the nondeterministic finite automata, shown above, are the NFA’s M2 and M3, re-

spectively.

It is possible to prove the following (about Mk) by induction on i: For every integer i such that

1 ≤ i ≤ k, and for every string ω ∈ Σ⋆,

qi ∈ δ⋆(q0, ω) if and only if ω ∈ Li.

Thus L(Mk) = Lk — so that Lk has an NFA with only k + 1 states.

Claim 1. Let M̂ = (Q̂,Σ, δ̂, q̂0, F̂ ) be a DFA such that L(M̂ ) = Lk. Then |Q̂| ≥ 2k, that is, M̂
has at least 2k states.

Proof. This will be proved by contradiction. Let k be a positive integer and suppose — to

obtain a contradiction — that there exists a deterministic finite automaton

M = (Q,Σ, δ, q0, F )
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with alphabet Σ, whose language is Mk, such that |Q| < 2k (that is, M has strictly fewer than

2k states).

Σ⋆ has exactly 2k strings with length k so it follows by the “Pigeonhole Principle” that there

exist strings

ω1 = σ1σ2 . . . σk and ω2 = τ1τ2 . . . τk

in Σ⋆, both with length k, such that ω1 6= ω2 but δ̂⋆(q̂0, ω1) = δ̂⋆(q̂0, ω2).

Since ω1 6= ω2 there is an integer i such that 1 ≤ i ≤ k and σi 6= τi. Without loss of generality

we may assume that σi = 1 and τi = 0 (we can just switch ω1 and ω2 otherwise). Then

ω1 ∈ Lk−i+1 and ω2 /∈ Lk−i+1

For ℓ ≥ 0 let 1ℓ denote a string of ℓ 1’s — so that 10 = λ, 1 = 1, 12 = 11, and so on.

Each of the following things can now be proved by induction on ℓ: For every integer ℓ ≥ 0,

a) ω1 · 1ℓ ∈ Lk+ℓ−i+1 and ω2 · 1ℓ /∈ Lk+ℓ−i+1 — so that (in particular, with ℓ = i − 1)

ω1 · 1
i−1 ∈ Lk and ω2 · 1

i−1 /∈ Lk.

b) δ̂(q̂0, ω1 · 1
ℓ) = δ̂(q̂0, ω2 · 1

ℓ) — so that (in particular, with ℓ = i − 1) δ̂(q̂0, ω1 · 1
i−1) and

δ̂(q̂0, ω2 · 1
i−1) are both equal to the same state q̂ ∈ Q̂.

Now, since ω1 · 1
i−1 ∈ Lk, δ̂(q̂0, ω1 · 1

i−1) = q̂, and L(M̂ ) = Lk, it must be true that q̂ ∈ F̂ .

Since δ̂(q̂0, ω2 · 1
i−1) = q̂ it now follows that ω2 · 1

i−1 ∈ L(M̂ ) = Lk as well.

We have a contradiction — because we already know that ω2 · 1
i−1 /∈ Lk.

So, an assumption that we made, along the way, must be incorrect. We only made one

assumption, so that one must be false: “The DFA for Lk being considered has fewer than

2k states.”

Since this was an arbitrarily chosen DFA whose language is Lk, it now follows that every DFA

whose language is Lk must have at least 2k states, as claimed.
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