Lecture #6: Equivalence of Deterministic Finite Automata and Nondeterministic Finite Automata

A Bad Case for the Subset Construction

Near the end of the lecture notes, it was claimed that there exists an infinite sequence of languages

$$
L_1, L_2, L_3, \dots \subseteq \Sigma^{\star}
$$

over the alphabet $\Sigma = \{0, 1\}$, such that — for every positive integer $k \equiv L_k$ is the language of a nondeterministic finite automaton with $k + 1$ states. but such that every *deterministic* finite automaton with language L_k must include at least 2^k states.

This document — which is for interest only (and is certainly not required reading) — presents a proof of this claim. It is based on material found in Section 2.3 of the text of Hopcroft, Motwani and Ullman [1].

As above, let $\Sigma = \{0, 1\}$, and let

$$
L_1 = \{ \omega \in \Sigma^* \mid \omega \text{ ends with a 1} \}
$$

Then the following nondeterministic finite automaton has language L_1 :

Languages $L_2, L_3, L_4, \cdots \subseteq \Sigma^{\star}$ can be "inductively defined" by setting

$$
L_{k+1} = \{ \omega \cdot \sigma \mid \omega \in L_k \text{ and } \sigma \in \Sigma \}.
$$

Then L_2 includes all strings in Σ^{\star} whose *second-to-last* symbol is 1... and so on.

Now, the following NFA has language L_2 :

Similarly, the following NFA has language L_3 :

For $k \geq 1$ consider an NFA $M_k = (Q_k, \Sigma, \delta_k, F_k)$ where

- $Q_k = \{q_0, q_1, q_2, \ldots, q_k\}$, so that M_k has $k + 1$ states.
- $\delta_k(q_0, 0) = \{q_0\}, \delta_k(q_0, 1) = \{q_0, q_1\}, \text{ and } \delta_k(q_0, \lambda) = \emptyset;$
- For every integer j such that $1 \leq j \leq k-1$, $\delta_k(q_j, 0) = \delta_k(q_j, 1) = \{q_{j+1}\}\$ and $\delta_k(q_j, \lambda) = \emptyset;$

•
$$
\delta_k(q_k, 0) = \delta_k(q_k, 1) = \delta_k(q_k, \lambda) = \emptyset.
$$

•
$$
F_k = \{q_k\}
$$

Note that the nondeterministic finite automata, shown above, are the NFA's M_2 and M_3 , respectively.

It is possible to prove the following (about M_k) by induction on i: For every integer i such that $1 \leq i \leq k$, and for every string $\omega \in \Sigma^*$,

$$
q_i\in\delta^\star(q_0,\omega)\text{ if and only if }\omega\in L_i.
$$

Thus $L(M_k) = L_k$ — so that L_k has an NFA with only $k + 1$ states.

 ${\sf Claim~1.}$ Let $\widehat{M}=(\widehat{Q},\Sigma,\widehat{\delta},\widehat{q}_0,\widehat{F})$ be a DFA such that $L(\widehat{M}\,)=L_k.$ Then $|\widehat{Q}|\geq 2^k$, that is, \widehat{M} *at least* 2^k *<i>states.*

Proof. This will be proved by contradiction. Let k be a positive integer and suppose $-$ to obtain a contradiction — that there exists a deterministic finite automaton

$$
M = (Q, \Sigma, \delta, q_0, F)
$$

with alphabet Σ , whose language is M_k , such that $|Q| < 2^k$ (that is, M has strictly fewer than 2^k states).

 Σ^{\star} has *exactly* 2^{k} strings with length k so it follows by the "Pigeonhole Principle" that there exist strings

$$
\omega_1 = \sigma_1 \sigma_2 \dots \sigma_k \text{ and } \omega_2 = \tau_1 \tau_2 \dots \tau_k
$$

in Σ^\star , both with length k , such that $\omega_1\neq\omega_2$ but $\widehat{\delta}^{\star}(\widehat{q}_0,\omega_1)=\widehat{\delta}^{\star}(\widehat{q}_0,\omega_2).$

Since $\omega_1\neq\omega_2$ there is an integer i such that $1\leq i\leq k$ and $\sigma_i\neq\tau_i.$ Without loss of generality we may assume that $\sigma_i = 1$ and $\tau_i = 0$ (we can just switch ω_1 and ω_2 otherwise). Then $\omega_1 \in L_{k-i+1}$ and $\omega_2 \notin L_{k-i+1}$

For $\ell \geq 0$ let 1^{ℓ} denote a string of ℓ 1's — so that $1^0 = \lambda$, $1 = 1$, $1^2 = 11$, and so on.

Each of the following things can now be proved by induction on ℓ : For every integer $\ell \geq 0$,

- a) $\omega_1 \cdot 1^{\ell} \in L_{k+\ell-i+1}$ and $\omega_2 \cdot 1^{\ell} \notin L_{k+\ell-i+1}$ so that (in particular, with $\ell = i-1$) $\omega_1 \cdot 1^{i-1} \in L_k$ and $\omega_2 \cdot 1^{i-1} \notin L_k$.
- b) $\widehat{\delta}(\widehat{q}_0,\omega_1\cdot 1^\ell)=\widehat{\delta}(\widehat{q}_0,\omega_2\cdot 1^\ell)$ so that (in particular, with $\ell=i-1$) $\widehat{\delta}(\widehat{q}_0,\omega_1\cdot 1^{i-1})$ and $\delta(\widehat{q}_0, \omega_2 \cdot 1^{i-1})$ are both equal to the same state $\widehat{q} \in \widehat{Q}$.

Now, since $\omega_1\cdot 1^{i-1}\in L_k,$ $\widehat{\delta}(\widehat{q}_0,\omega_1\cdot 1^{i-1})=\widehat{q},$ and $L(\widehat{M}\,)=L_k,$ it must be true that $\widehat{q}\in \widehat{F}.$ Since $\widehat{\delta}(\widehat{q}_0,\omega_2\cdot 1^{i-1})=\widehat{q}$ it now follows that $\omega_2\cdot 1^{i-1}\in L(\widehat{M}\,)=L_k$ as well.

We have a $\bm{content}$ contradiction — because we already know that $\omega_2 \cdot 1^{i-1} \notin L_k.$

So, an assumption that we made, along the way, must be incorrect. We only made one assumption, so *that* one must be false: "The DFA for L_k being considered has fewer than 2^k states."

Since this was an arbitrarily chosen DFA whose language is L_k , it now follows that **every** DFA whose language is L_k must have at least 2^k states, as claimed. \Box

References

[1] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. *Introduction to Automata Theory, Languages, and Computation*. Pearson Education, third edition, 2007.