
Lecture #5: Introduction to

Nondeterministic Finite Automata

Computation of λ-Closures

It should not be difficult to write a program that decides membership in the language of a given

deterministic finite automaton — or even to write a program that receives a given deterministic

finite automaton M with an alphabet Σ, and a string ω ∈ Σ⋆ as input, and decides whether

ω ∈ L(M).1

The lecture notes have provided almost — but not quite — enough detail for the same kind

of programs to be written for nondeterministic finite automata instead of deterministic finite

automata. The goal of these notes is supply the information that is missing, here — that is, to

give an algorithm that can be used to compute the function

Clλ : Q → P(Q)

that was described during the first lecture on nondeterministic finite automata.

Another Function That is Easier to Describe and Compute

Let Σ be an alphabet and let M = (Q,Σ, δ, q0, F ) be a nondeterministic finite automaton with

alphabet Σ. Recall that, “λ-closure” Clλ(q), of a state q ∈ Q, is defined to be the set of states

that can be reached by following any sequence of zero or more λ-transitions from q. Let us

begin by considering a different function instead, namely, the function

Ĉlλ : Q× N → P(Q)

such that, for every state q ∈ Q and every integer k ≥ 0, Ĉlλ(q, k) is the set of states in Q

that can be reached from q by following at most k λ-transitions. It follows by the definitions of

these sets that

Clλ(q) =
⋃

k∈N

Ĉlλ(q, k) (1)

for every state q ∈ Q.

1Complications might include figuring how to represent, or “encode” M and ω at all — especially if the alphabet Σ

is large.
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Now notice that Ĉlλ(q, 0) = {q}, since q is the only state that can be reached from q without

following any transitions at all. On the other hand, if k ≥ 1 then Ĉlλ(q, k) includes all the states

in Ĉlλ(q, k − 1), as well as all (and only) the additional states that can be reached

• by first following k − 1 λ-transitions from q — so that one of the states r ∈ Ĉlλ(q, k − 1)
is reached, and then

• following one more λ-transition, to reach one of the states in q(r, λ).

This provides the following “inductive” or “recursive” definition of this function: For every state

q ∈ Q and for every integer k ≥ 0,

Ĉlλ(q, k) =





{q} if k = 0,

Ĉlλ(q, k − 1) ∪
⋃

r∈Ĉlλ(q,k−1)

δ(r, λ) if k ≥ 1. (2)

Now

Ĉlλ(q, k) ⊆ Ĉlλ(q, k + 1) ⊆ Clλ(q)

for every state q ∈ Q and for every integer k ≥ 0. The next two results explain more about the

relationship between these sets and will be useful when an algorithm to compute Clλ(q) (for a

given state q) is developed and analyzed.

Lemma 1. Let q be a state and let k be a nonnegative integer. Suppose that Ĉlλ(q, k) =
Ĉlλ(q, k + 1). Then the following properties are also satisfied.

(a) Ĉlλ(q, k) = Ĉlλ(q, k +m) as well, for every integer m such that m ≥ 1.

(b) Ĉlλ(q, k) = Clλ(q).

Proof. Part (a) will be proved by induction on m. The standard form of mathematical induction

will be used.

Basis: If m = 1 then it is necessary and sufficient to prove that Ĉlλ(q, k) = Ĉlλ(q, k + 1).
However, this is given as an assumption.

Inductive Step: Let m be an integer such that m ≥ 1. It is now necessary and sufficient to use

the following

Inductive Hypothesis: Ĉlλ(q, k) = Ĉlλ(q, k +m)

to prove the following

Inductive Claim: Ĉlλ(q, k) = Ĉlλ(q, k +m+ 1).
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Now, since k +m ≥ k + 1 ≥ 1,

Ĉlλ(q, k +m+ 1) = Ĉlλ(q, k +m) ∪
⋃

r∈Ĉlλ(q,k+m)

δ(r, λ)

(by the equation at line (2), with k replaced by k +m+ 1)

= Ĉlλ(q, k) ∪
⋃

r∈Ĉlλ(q,k)

δ(r, λ) (by the inductive hypothesis)

= Ĉlλ(q, k + 1)
(by an application of the equation at line (2) once again, with k replaced by k + 1)

= Ĉlλ(q, k) (by the result established in the basis)

as needed to complete the inductive step.

Part (a) of the claim now follows by induction on m.

It is certainly true that Ĉlλ(q, k) ⊆ Clλ(q). It is therefore sufficient to prove that Clλ(q) ⊆
Ĉlλ(q, k), as well, in order to prove part (b).

With that noted, let r ∈ Clλ(q). Then r can be reached from q by following a (finite) sequence

of zero or more λ-transitions, so that r ∈ Ĉlλ(q, ℓ) for some integer ℓ ≥ 0. (In particular, ℓ is

the length of a sequence of λ-transitions that start at q and end at r).

If ℓ ≤ k then r ∈ Ĉlλ(q, k) as well, since Ĉlλ(q, ℓ) ⊆ Ĉlλ(q, k).

On the other hand, if ℓ > k then ℓ = k +m for some integer m ≥ 1 and r ∈ Ĉlλ(q, k) once

again, because it follows by part (a) that Ĉlλ(q, ℓ) = Ĉlλ(q, k).

Since r was arbitrarily chosen from Clλ(q) it now follows that Clλ(q) ⊆ Ĉlλ(q, k), as required

to complete the proof.

Lemma 2. If k is a positive integer such that Ĉlλ(q, k − 1) 6= Ĉlλ(q, k) then

|Ĉlλ(q, k)| ≥ k + 1.

The proof of this claim is left as an easy exercise. (Hint: Use induction on k and remember

that Ĉlλ(q, k − 1) ⊆ Ĉlλ(q, k).)

Corollary 3. If k ≥ |Q| − 1 then Ĉlλ(q, k) = Clλ(q).

Proof. Suppose, to the contrary, that k ≥ |Q| − 1 and Ĉlλ(q, k) 6= Clλ(q). Then it follows by

Lemma 1 that Ĉlλ(q, k) 6= Ĉlλ(q, k + 1). However, it now follows by Lemma 2 (with k replaced

by k + 1) that

|Ĉlλ(q, k + 1)| ≥ k + 2 ≥ |Q|+ 1,

and this is certainly impossible, since Ĉlλ(q, k + 1) ⊆ Q.
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On input q ∈ Q:

integer k := 0;

R := {q}; // Now R = Ĉlλ(q, k)

S := R ∪
⋃

r∈R

δ(r, λ); // Now S = Ĉlλ(q, k + 1)

while (R 6= S) {

k := k + 1;

R := S // Now R = Ĉlλ(q, k), once again

S := R ∪
⋃

r∈R

δ(r, λ); // Now S = Ĉlλ(q, k + 1), once again

};

return R;

Figure 1: An Algorithm To Compute Clλ(q)

An Algorithm To Compute Clλ(q)

An algorithm to compute Clλ(q) (for a given state q ∈ Q) can now be described and analyzed.

Pseudocode for this algorithm is shown in Figure 1. In this algorithm, R and S are both subsets

of Q.

Lemma 4. Suppose that the body of the while loop is executed at least ℓ times, for an integer

ℓ ≥ 1. Then the following properties are satisfied.

• k = ℓ − 1, R = Ĉlλ(q, ℓ − 1), and S = Ĉlλ(q, ℓ) at the beginning of the ℓth execution of

the body of the loop, and

• k = ℓ, R = Ĉlλ(q, ℓ), and S = Ĉlλ(q, ℓ+ 1) at the end of the ℓth execution of the body of

the loop.

How To Prove This: Use mathematical induction on ℓ and inspection of the code (the comments

that are included in the code are intended to make this easy to do).

Lemma 5. If the algorithm is executed with a state q ∈ Q as input then the body of the while
loop is executed at most |Q| − 1 times before the while loop’s test fails and the while loop is

exited.

Proof. If the body of the while loop is executed fewer than |Q| − 1 times then the claim

is certainly correct. On the other hand, it follows by Lemma 4 that if the body of the loop is
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executed |Q|−1 times then R = Ĉlλ(q, |Q|−1) and S = Ĉlλ(q, |Q|) at the end of this execution

of the loop body. It now follows by Corollary 3 that R = S = Clλ(q) at this point, so that the

loop test fails — is needed to establish the claim.

Theorem 6. The algorithm shown in Figure 1 is correct. That is, if is executed with a state q ∈
Q as input then the algorithm always halts, and it always returns Clλ(q) as output.

Proof. Lemma 5 establishes that this program always halts. One can see by an inspection of

the code (as well as a consideration of Lemma 4) that, when it halts, it returns a set Ĉlλ(q, ℓ)
as output, where S = Ĉlλ(q, ℓ + 1) = Ĉlλ(q, ℓ). It now follows by part (b) of Lemma 1 that

the output returned is the set Clλ(q), as needed to complete the proof that the algorithm is

correct.

Suggested Exercises

1. Trace the execution of this algorithm, by hand, to compute Clλ(q) for each of the states q

in the nondeterministic finite automaton considered in Tutorial Exercise #4.

2. Look for ways to make this algorithm more efficient (by eliminating computations that do

not change the sets that are computed, so that the algorithm remains correct).

3. Students who have already completed CPSC 331 or 319 should consider a directed

graph G = (V,E) in which V = Q and, for r, s ∈ V , such that r 6= s, there is an edge

from r to s if and only if s ∈ δ(r, λ).

Try to prove the following2: For all states r and s, s ∈ Clλ(r) if and only if there is a path

from r to s (with edges followed in the right direction) in G.

Now, try to identify one (or more!) algorithms that you learned about in CPSC 319 or 331

that can also be used to compute Clλ(q) for a given state q, and that are probably more

efficient than the one that has been described in this document.

2The proof is actually not very difficult to find!

5


