Lecture #4: DFA Design and Verification — Part Two Proof of a Significant Technical Result

The notes for this lecture included the following "significant technical result". **Theorem 1** (Correctness of a DFA). Let $L \subseteq \Sigma^*$, for an alphabet Σ , and let

$$M = (Q, \Sigma, \delta, q_0, F)$$

with the same alphabet Σ . Suppose that (after renaming states, if needed)

$$Q = \{q_0, q_1, \dots, q_{n-1}\}$$

where $n = |Q| \ge 1$. Suppose, as well, that

$$S_0, S_1, \ldots, S_{n-1}$$

are subsets of Σ^* such that the following properties are satisfied.

(a) Every string in Σ^* belongs to **exactly one** of

$$S_0, S_1, \ldots, S_{n-1}.$$

(b) $\lambda \in S_0$.

- (c) $S_i \subseteq L$ for every integer *i* such that $0 \le i \le n-1$ and $q_i \in F$.
- (d) $S_i \cap L = \emptyset$ for every integer *i* such that $0 \le i \le n-1$ and $q_i \notin F$.
- (e) The following property is satisfied, for every integer *i* such that $0 \le i \le n-1$ and for every symbol $\sigma \in \Sigma$:

"Suppose that
$$q_i = \delta(q_i, \sigma)$$
 (so that $0 \le j \le n-1$). Then $\{\omega \cdot \sigma \mid \omega \in S_i\} \subseteq S_j$."

Then L(M) = L.

This document provides a proof of this result.

To begin, consider the following claim, which asserts that the "extended transition function" of the DFA models the relationship between the given subsets of Σ^* , and states of the DFA, that one would expect.

Lemma 2. Let $L \subseteq \Sigma^*$, for an alphabet Σ , and let

$$M = (Q, \Sigma, \delta, q_0, F)$$

with the same alphabet Σ . Suppose that (after renaming states, if needed)

$$Q = \{q_0, q_1, \dots, q_{n-1}\}$$

where $n = |Q| \ge 1$. Suppose, as well, that

 $S_0, S_1, \ldots, S_{n-1}$

are subsets of Σ^* such that properties (a), (b), and (e), given in Theorem 1 are satisfied — that is,

(a) Every string in Σ^* belongs to **exactly one** of

$$S_0, S_1, \ldots, S_{n-1}.$$

(b) $\lambda \in S_0$.

(e) The following property is satisfied, for every integer *i* such that $0 \le i \le n-1$ and for every symbol $\sigma \in \Sigma$:

"Suppose that
$$q_j = \delta(q_i, \sigma)$$
 (so that $0 \le j \le n-1$). Then $\{\omega \cdot \sigma \mid \omega \in S_i\} \subseteq S_j$."

Then the following holds, for every string $\omega \in \Sigma^*$: For every integer j such that $0 \le j \le n-1$, $\delta^*(q_0, \omega) = q_j$ if and only if $\omega \in S_j$.

Proof. The result will be proved **by induction on the length of the string** ω . The standard form of mathematical induction will be used, and the case that $|\omega| = 0$ will be considered in the basis.

Basis: If $|\omega| = 0$ then $\omega = \lambda$, the empty string. Thus it is necessary and sufficient to prove that, for every integer *j* such that $0 \le j \le n - 1$, $\delta^*(q_0, \lambda) = q_j$ if and only if $\lambda \in S_j$.

Either j = 0 or $1 \le j \le n - 1$. These cases are considered separately, below.

• If j = 0 then it follows by the definition of the "extended transition function" that

$$\delta^{\star}(q_0,\lambda) = q_0 = q_j,$$

so that it is now necessary and sufficient to show that $\lambda \in S_j$. Since j = 0, $S_j = S_0$, and this follows by property (b), as given above.

- If $1 \le j \le n-1$ then it follows, again by the definition of the "extended transition function", that

$$\delta^{\star}(q_0,\lambda) = q_0 \neq q_j$$

so that it is now necessary and sufficient to show that $\lambda \notin S_j$. Now, as noted above, $\lambda \in S_0$ and it follows by property (a) that λ belongs to *exactly one* of $S_0, S_1, \ldots, S_{n-1}$. Thus λ does not belong to S_i (since $j \neq 0$). That is, $\lambda \notin S_j$, as desired.

Thus $\delta^*(\lambda) = q_j$ if and only if $\lambda \in S_j$, for every integer j such that $0 \le j \le n - 1$, as required here.

Inductive Step: Let k be an integer such that $k \ge 0$. It is now necessary and sufficient (for the Inductive Step) to use the following "Inductive Hypothesis" to prove the following "Inductive Claim".

Inductive Hypothesis: The following property is satisfied for every string $\omega \in \Sigma^*$ such that $|\omega| = k$: For every integer j such that $0 \leq j \leq n-1$, $\delta^*(q_0, \omega) = q_j$ if and only if $\omega \in S_j$.

Inductive Claim: The following property is satisfied for every string $\omega \in \Sigma^*$ such that $|\omega| = k + 1$: For every integer j such that $0 \le j \le n - 1$, $\delta^*(q_0, \omega) = q_j$ if and only if $\omega \in S_j$.

With that noted, let ω be a string in Σ^* such that $|\omega| = k + 1$ — so that we now wish to prove (for this string) that, for every integer j such that $0 \le j \le n - 1$, $\delta^*(q_0, \omega) = q_j$ if and only if $\omega \in S_j$.

Since $k \ge 0$, $k + 1 \ge 1$, so that $|\omega| \ge 1$. Thus

$$\omega = \mu \cdot \sigma$$

for some string $\mu \in \Sigma^*$ such that $|\mu| = k$, and for some symbol $\sigma \in \Sigma$.

Let ℓ be an integer such that $0 \leq \ell \leq n-1$ and such that

$$\delta^{\star}(q_0,\mu) = q_{\ell}.\tag{1}$$

Then — since μ is a string in Σ^* such that $|\mu| = k$ — It follows, by the Inductive Hypothesis, that $\delta^*(q_0, \mu) = q_h$ if and only if $\mu \in S_h$, for every integer h such that $0 \le h \le n - 1$. Thus $\mu \in S_\ell$, by the equation at line (1) and — since property (a) is satisfied — $\mu \notin S_h$ for any integer h such that $0 \le h \le n - 1$ and $h \ne \ell$.

Let *j* be an integer such that $0 \le j \le n-1$, so that we now wish to prove that $\delta^*(q_0, \omega) = q_j$ if and only if $\omega \in S_j$. Either $q_j = \delta(q_\ell, \sigma)$ or $q_j \ne \delta(q_\ell, \sigma)$. These cases are considered separately, below.

• If $q_j = \delta(q_\ell, \sigma)$ then

$$\begin{split} \delta^{\star}(q_{0},\omega) &= \delta^{\star}(q_{0},\mu\cdot\sigma) & (\text{since } \omega = \mu\cdot\sigma) \\ &= \delta(\delta^{\star}(q_{0},\mu),\sigma) & (\text{by the results of Lecture #2}) \\ &= \delta(q_{\ell},\sigma) & (\text{by the equation at line (1)}). \end{split}$$

Thus $\delta^{\star}(q_0, \omega) = q_j$, and we now wish to prove that $\omega \in S_j$.

As noted above, $\mu \in S_{\ell}$. Since $q_j = \delta(q_{\ell}, \sigma)$, it follows by property (e) (using ℓ in place of the integer called *i*, and using μ in place of the string called ω) that

$$\omega = \mu \cdot \sigma \subseteq \{\nu \cdot \sigma \mid \nu \in S_\ell\} \subseteq S_j.$$

That is, $\omega \in S_j$ as desired.

• If $q_j \neq \delta(q_\ell, \sigma)$ then $\delta^*(q_0, \omega) \neq q_j$ because $\delta^*(q_0, \omega) = \delta(q_\ell, \sigma)$, as shown above — and we now wish to prove that $\omega \notin S_j$. Set *h* to be the integer such that $0 \leq h \leq n-1$ and $\delta(q_\ell, \sigma) = q_h$. Then property (e) can be applied, once again, to argue that

$$\omega = \mu \cdot \sigma \in \{\nu \cdot \sigma \mid \nu \in S_\ell\} \subseteq S_h.$$

Now, since $q_h = \delta(q_\ell, \sigma) \neq q_j$, $h \neq j$ and it follows by property (a) that $\omega \notin S_j$ (since this property now implies that $S_h \cap S_h = \emptyset$) — as desired.

Thus $\delta^*(q_0, \omega) = q_j$ if and only if $\omega \in S_j$, for every integer j such that $0 \le j \le n - 1$. Since ω was an arbitrarily chosen string in Σ^* such that $|\omega| = k + 1$, this establishes the Inductive Claim — as needed to complete the Inductive Step.

The claim now follows by induction on the length of ω .

It remains only to use the above claim, and conditions (c) and (d) (from the statement of Theorem 1) to prove that L(M) = L. As is often the case, it easiest to see this if we split this into two tasks, namely, proving that $L(M) \subseteq L$, and proving that $L \subseteq L(M)$.

Lemma 3. Let $L \subseteq \Sigma^*$, for an alphabet Σ , and let

$$M = (Q, \Sigma, \delta, q_0, F)$$

with the same alphabet Σ . Suppose that (after renaming states, if needed)

$$Q = \{q_0, q_1, \dots, q_{n-1}\}$$

where $n = |Q| \ge 1$. Suppose, as well, that

 $S_0, S_1, \ldots, S_{n-1}$

are subsets of Σ^* such that properties (a), (b), (c) and (e) given in Theorem 1 are satisfied — that is, properties (a), (b), and (e) are satisfied and (since property (c) is satisfied, as well) $S_i \subseteq L$ for every integer *i* such that $0 \le i \le n-1$ and $q_i \in F$. Then $L(M) \subseteq L$. *Proof.* Let $\omega \in \Sigma^*$ such that $\omega \in L(M)$, that is, such that M accepts ω . It is necessary, and sufficient, to prove that $\omega \in L$.

Since M accepts ω , $\delta^*(q_0, \omega) = q_j$ for some integer j such that $0 \le j \le n - 1$ and $q_j \in F$. Since properties (a), (b) and (e) are satisfied, it follows by Lemma 2 that $\omega \in S_j$. Since $q_j \in F$, it follows by property (c) that $S_j \subseteq L$. Thus $\omega \in L$, as needed to establish the claim.

Lemma 4. Let $L \subseteq \Sigma^*$, for an alphabet Σ , and let

$$M = (Q, \Sigma, \delta, q_0, F)$$

with the same alphabet Σ . Suppose that (after renaming states, if needed)

$$Q = \{q_0, q_1, \dots, q_{n-1}\}$$

where $n = |Q| \ge 1$. Suppose, as well, that

$$S_0, S_1, \ldots, S_{n-1}$$

are subsets of Σ^* such that properties (a), (b), (d) and (e) given in Theorem 1 are satisfied — that is, properties (a), (b) and (e) are satisfied and (since property (d) is satisfied, as well) $S_i \cap L = \emptyset$ for every integer *i* such that $0 \le i \le n - 1$ and $q_i \notin F$. Then $L \subseteq L(M)$.

Proof. Let $\omega \in \Sigma^*$ such that $\omega \in L$. It is necessary and sufficient to prove that $L \subseteq L(M)$, that is, M accepts ω .

Suppose, to obtain a contradiction, that M does not accept ω — that, is, $\delta^*(q_0, \omega) = q_j$ for some integer j such that $0 \le j \le n - 1$ and $q_j \notin F$. Since properties (a), (b) and (e) are satisfied, it follows by Lemma 2 that $\omega \in S_j$. Since $q_j \notin F$, it follows by property (d) that $S_j \cap L = \emptyset$. Thus $\omega \notin L$ and, since ω was chosen to be in L, a *contradiction* has been obtained. Our assumption must, therefore be false. That is, M accepts ω , so that $\omega \in L(M)$.

Since ω was arbitrarily chosen from L it follows that $L \subseteq L(M)$, as claimed.

Proof of Theorem 1. Theorem 1 follows directly from Lemmas 3 and 4, which have now been proved.