Lecture #4: DFA Design and Verification — Part Two Proof of a Significant Technical Result

The notes for this lecture included the following "significant technical result".

Theorem 1 (Correctness of a DFA)**.** *Let* L ⊆ Σ ⋆ *, for an alphabet* Σ*, and let*

$$
M = (Q, \Sigma, \delta, q_0, F)
$$

with the same alphabet Σ*. Suppose that (after renaming states, if needed)*

$$
Q = \{q_0, q_1, \ldots, q_{n-1}\}
$$

where $n = |Q| \geq 1$ *. Suppose, as well, that*

$$
S_0, S_1, \ldots, S_{n-1}
$$

are subsets of Σ ⋆ *such that the following properties are satisfied.*

(a) Every string in Σ [⋆] *belongs to* **exactly one** *of*

$$
S_0, S_1, \ldots, S_{n-1}.
$$

(b) $\lambda \in S_0$.

- *(c)* $S_i \subseteq L$ *for every integer i such that* $0 \le i \le n 1$ *and* $q_i \in F$ *.*
- *(d)* $S_i \cap L = \emptyset$ *for every integer i such that* $0 \leq i \leq n-1$ *and* $q_i \notin F$ *.*
- *(e)* The following property is satisfied, for every integer *i* such that $0 \le i \le n 1$ and for every *symbol* $\sigma \in \Sigma$ *:*

"Suppose that
$$
q_j = \delta(q_i, \sigma)
$$
 (so that $0 \le j \le n-1$). Then $\{\omega \cdot \sigma \mid \omega \in S_i\} \subseteq S_j$."

Then $L(M) = L$ *.*

This document provides a proof of this result.

To begin, consider the following claim, which asserts that the "extended transition function" of the DFA models the relationship between the given subsets of Σ^{\star} , and states of the DFA, that one would expect.

Lemma 2. Let $L \subseteq \Sigma^*$, for an alphabet Σ , and let

$$
M = (Q, \Sigma, \delta, q_0, F)
$$

with the same alphabet Σ*. Suppose that (after renaming states, if needed)*

$$
Q = \{q_0, q_1, \ldots, q_{n-1}\}
$$

where $n = |Q| \geq 1$ *. Suppose, as well, that*

 $S_0, S_1, \ldots, S_{n-1}$

are subsets of Σ ⋆ *such that properties (a), (b), and (e), given in Theorem 1 are satisfied — that is,*

(a) Every string in Σ [⋆] *belongs to* **exactly one** *of*

$$
S_0, S_1, \ldots, S_{n-1}.
$$

(b) $\lambda \in S_0$.

(e) The following property is satisfied, for every integer i *such that* 0 ≤ i ≤ n − 1 *and for every symbol* $\sigma \in \Sigma$ *:*

"Suppose that
$$
q_j = \delta(q_i, \sigma)
$$
 (so that $0 \leq j \leq n-1$). Then $\{\omega \cdot \sigma \mid \omega \in S_i\} \subseteq S_j$."

Then the following holds, for every string $\omega \in \Sigma^*$: For every integer j such that $0 \le j \le n - 1$, $\delta^{\star}(q_0,\omega) = q_j$ if and only if $\omega \in S_j$.

Proof. The result will be proved *by induction on the length of the string* ω. The standard form of mathematical induction will be used, and the case that $|\omega|=0$ will be considered in the basis.

Basis: If $|\omega| = 0$ then $\omega = \lambda$, the empty string. Thus it is necessary and sufficient to prove that, for every integer j such that $0\leq j\leq n-1$, $\delta^{\star}(q_{0},\lambda)=q_{j}$ if and only if $\lambda\in S_{j}.$

Either $j = 0$ or $1 \le j \le n - 1$. These cases are considered separately, below.

• If $j = 0$ then it follows by the definition of the "extended transition function" that

$$
\delta^{\star}(q_0,\lambda) = q_0 = q_j,
$$

so that it is now necessary and sufficient to show that $\lambda \in S_j$. Since $j = 0$, $S_j = S_0$, and this follows by property (b), as given above.

• If $1 \leq i \leq n-1$ then it follows, again by the definition of the "extended transition function", that

$$
\delta^{\star}(q_0,\lambda)=q_0\neq q_j
$$

so that it is now necessary and sufficient to show that $\lambda \notin S_i$. Now, as noted above, $\lambda \in S_0$ and it follows by property (a) that λ belongs to *exactly one* of $S_0, S_1, \ldots, S_{n-1}$. Thus λ *does not* belong to S_j (since $j \neq 0$). That is, $\lambda \notin S_j$, as desired.

Thus $\delta^*(\lambda)=q_j$ if and only if $\lambda\in S_j,$ for every integer j such that $0\leq j\leq n-1,$ as required here.

Inductive Step: Let k be an integer such that $k \geq 0$. it is now necessary and sufficient (for the Inductive Step) to use the following "Inductive Hypothesis" to prove the following "Inductive Claim".

Inductive Hypothesis: The following property is satisfied for every string $\omega \in \Sigma^*$ such that $|\omega|=k$: For every integer j such that $0\leq j\leq n-1,$ $\delta^{\star}(q_0,\omega)=q_j$ if and only if $\omega \in S_j$.

Inductive Claim: The following property is satisfied for every string $\omega \in \Sigma^*$ such that $|\omega|=k+1.$ For every integer j such that $0\leq j\leq n-1,$ $\delta^{\star}(q_0,\omega)=q_j$ if and only if $\omega \in S_i$.

With that noted, let ω be a string in Σ^{\star} such that $|\omega|=k+1$ — so that we now wish to prove (for this string) that, for every integer j such that $0 \leq j \leq n-1$, $\delta^{\star}(q_0,\omega) = q_j$ if and only if $\omega \in S_i$.

Since $k \geq 0$, $k + 1 \geq 1$, so that $|\omega| \geq 1$. Thus

$$
\omega = \mu \cdot \sigma
$$

for some string $\mu \in \Sigma^{\star}$ such that $|\mu|=k,$ and for some symbol $\sigma \in \Sigma.$

Let ℓ be an integer such that $0 \leq \ell \leq n-1$ and such that

$$
\delta^{\star}(q_0,\mu) = q_{\ell}.\tag{1}
$$

Then — since μ is a string in Σ^\star such that $|\mu| = k$ — It follows, by the Inductive Hypothesis, that $\delta^\star(q_0,\mu)=q_h$ if and only if $\mu\in S_h,$ for every integer h such that $0\leq h\leq n-1.$ Thus $\mu\,\in\, S_\ell,$ by the equation at line (1) and — since property (a) is satisfied — $\mu\,\notin\, S_h$ for any integer h such that $0 \le h \le n-1$ and $h \ne \ell$.

Let j be an integer such that $0 \leq j \leq n-1$, so that we now wish to prove that $\delta^{\star}(q_0,\omega) = q_j$ if and only if $\omega\,\in\, S_j.$ Either $q_j\,=\,\delta(q_\ell,\sigma)$ or $q_j\,\neq\,\delta(q_\ell,\sigma).$ These cases are considered separately, below.

• If $q_j = \delta(q_\ell, \sigma)$ then

$$
\delta^{\star}(q_0, \omega) = \delta^{\star}(q_0, \mu \cdot \sigma)
$$
\n
$$
= \delta(\delta^{\star}(q_0, \mu), \sigma)
$$
\n(by the results of Lecture #2)

\n
$$
= \delta(q_{\ell}, \sigma)
$$
\n(by the equation at line (1)).

Thus $\delta^{\star}(q_0,\omega)=q_j,$ and we now wish to prove that $\omega\in S_j.$

As noted above, $\mu\in S_\ell.$ Since $q_j=\delta(q_\ell,\sigma),$ it follows by property (e) (using ℓ in place of the integer called i, and using μ in place of the string called ω) that

$$
\omega = \mu \cdot \sigma \subseteq \{ \nu \cdot \sigma \mid \nu \in S_{\ell} \} \subseteq S_j.
$$

That is, $\omega \in S_j$ as desired.

• If $q_j \neq \delta(q_\ell, \sigma)$ then $\delta^*(q_0, \omega) \neq q_j$ because $\delta^*(q_0, \omega) = \delta(q_\ell, \sigma)$, as shown above — and we now wish to prove that $\omega \notin S_j$. Set h to be the integer such that $0 \leq h \leq n - 1$ and $\delta(q_\ell,\sigma)=q_h.$ Then property (e) can be applied, once again, to argue that

$$
\omega = \mu \cdot \sigma \in \{ \nu \cdot \sigma \mid \nu \in S_{\ell} \} \subseteq S_h.
$$

Now, since $q_h=\delta(q_\ell,\sigma)\neq q_j,\,h\neq j$ and it follows by property (a) that $\omega\notin S_j$ (since this property now implies that $S_h \cap S_h = \emptyset$) — as desired.

 \Box

Thus $\delta^{\star}(q_0,\omega)=q_j$ if and only if $\omega\in S_j,$ for every integer j such that $0\leq j\leq n-1.$ Since ω was an arbitrarily chosen string in Σ^\star such that $|\omega|=k+1,$ this establishes the Inductive Claim — as needed to complete the Inductive Step.

The claim now follows by induction on the length of ω .

It remains only to use the above claim, and conditions (c) and (d) (from the statement of Theorem 1) to prove that $L(M) = L$. As is often the case, it easiest to see this if we split this into two tasks, namely, proving that $L(M) \subseteq L$, and proving that $L \subseteq L(M)$.

Lemma 3. Let $L \subseteq \Sigma^*$, for an alphabet Σ , and let

$$
M = (Q, \Sigma, \delta, q_0, F)
$$

with the same alphabet Σ*. Suppose that (after renaming states, if needed)*

$$
Q = \{q_0, q_1, \ldots, q_{n-1}\}
$$

where $n = |Q| \geq 1$ *. Suppose, as well, that*

 $S_0, S_1, \ldots, S_{n-1}$

are subsets of Σ ⋆ *such that properties (a), (b), (c) and (e) given in Theorem 1 are satisfied — that is, properties (a), (b), and (e) are satisfied and (since property (c) is satisfied, as well)* $S_i \subseteq L$ for every integer i such that $0 \leq i \leq n-1$ and $q_i \in F$. Then $L(M) \subseteq L$.

Proof. Let $\omega \in \Sigma^*$ such that $\omega \in L(M)$, that is, such that M accepts ω . It is necessary, and sufficient, to prove that $\omega \in L$.

Since M accepts ω , $\delta^*(q_0, \omega) = q_j$ for some integer j such that $0 \leq j \leq n-1$ and $q_j \in F$. Since properties (a), (b) and (e) are satisfied, it follows by Lemma 2 that $\omega \in S_j$. Since $q_j \in F$, it follows by property (c) that $S_j \subseteq L$. Thus $\omega \in L$, as needed to establish the claim. \Box

Lemma 4. Let $L \subseteq \Sigma^*$, for an alphabet Σ , and let

$$
M = (Q, \Sigma, \delta, q_0, F)
$$

with the same alphabet Σ*. Suppose that (after renaming states, if needed)*

$$
Q = \{q_0, q_1, \ldots, q_{n-1}\}
$$

where $n = |Q| \geq 1$ *. Suppose, as well, that*

$$
S_0, S_1, \ldots, S_{n-1}
$$

are subsets of Σ^* such that properties (a), (b), (d) and (e) given in Theorem 1 are satisfied *— that is, properties (a), (b) and (e) are satisfied and (since property (d) is satisfied, as well)* $S_i \cap L = \emptyset$ *for every integer* i *such that* $0 \leq i \leq n-1$ *and* $q_i \notin F$ *. Then* $L \subseteq L(M)$ *.*

Proof. Let $\omega \in \Sigma^*$ such that $\omega \in L$. It is necessary and sufficient to prove that $L \subseteq L(M)$, that is, M accepts ω .

Suppose, to obtain a contradiction, that M *does not* accept ω — that, is, $\delta^{\star}(q_0,\omega) = q_j$ for some integer j such that $0 \le j \le n-1$ and $q_j \notin F$. Since properties (a), (b) and (e) are satisfied, it follows by Lemma 2 that $\omega \in S_j$. Since $q_j \notin F$, it follows by property (d) that $S_j \cap L = \emptyset$. Thus $\omega \notin L$ and, since ω was chosen to be in L, a **contradiction** has been obtained. Our assumption must, therefore be false. That is, M accepts ω , so that $\omega \in L(M)$.

Since ω was arbitrarily chosen from L it follows that $L \subseteq L(M)$, as claimed.

Proof of Theorem 1. Theorem 1 follows directly from Lemmas 3 and 4, which have now been proved. \Box

 \Box