
Lecture #4: DFA Design and Verification — Part Two

Proof of a Significant Technical Result

The notes for this lecture included the following “significant technical result”.

Theorem 1 (Correctness of a DFA). Let L ⊆ Σ⋆, for an alphabet Σ, and let

M = (Q,Σ, δ, q0, F )

with the same alphabet Σ. Suppose that (after renaming states, if needed)

Q = {q0, q1, . . . , qn−1}

where n = |Q| ≥ 1. Suppose, as well, that

S0, S1, . . . , Sn−1

are subsets of Σ⋆ such that the following properties are satisfied.

(a) Every string in Σ⋆ belongs to exactly one of

S0, S1, . . . , Sn−1.

(b) λ ∈ S0.

(c) Si ⊆ L for every integer i such that 0 ≤ i ≤ n− 1 and qi ∈ F .

(d) Si ∩ L = ∅ for every integer i such that 0 ≤ i ≤ n− 1 and qi /∈ F .

(e) The following property is satisfied, for every integer i such that 0 ≤ i ≤ n− 1 and for every

symbol σ ∈ Σ:

“Suppose that qj = δ(qi, σ) (so that 0 ≤ j ≤ n−1). Then {ω ·σ | ω ∈ Si} ⊆ Sj.”

Then L(M) = L.

This document provides a proof of this result.

To begin, consider the following claim, which asserts that the “extended transition function” of

the DFA models the relationship between the given subsets of Σ⋆, and states of the DFA, that

one would expect.
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Lemma 2. Let L ⊆ Σ⋆, for an alphabet Σ, and let

M = (Q,Σ, δ, q0, F )

with the same alphabet Σ. Suppose that (after renaming states, if needed)

Q = {q0, q1, . . . , qn−1}

where n = |Q| ≥ 1. Suppose, as well, that

S0, S1, . . . , Sn−1

are subsets of Σ⋆ such that properties (a), (b), and (e), given in Theorem 1 are satisfied — that

is,

(a) Every string in Σ⋆ belongs to exactly one of

S0, S1, . . . , Sn−1.

(b) λ ∈ S0.

(e) The following property is satisfied, for every integer i such that 0 ≤ i ≤ n− 1 and for every

symbol σ ∈ Σ:

“Suppose that qj = δ(qi, σ) (so that 0 ≤ j ≤ n−1). Then {ω ·σ | ω ∈ Si} ⊆ Sj.”

Then the following holds, for every string ω ∈ Σ⋆: For every integer j such that 0 ≤ j ≤ n− 1,

δ⋆(q0, ω) = qj if and only if ω ∈ Sj .

Proof. The result will be proved by induction on the length of the string ω. The standard

form of mathematical induction will be used, and the case that |ω| = 0 will be considered in

the basis.

Basis: If |ω| = 0 then ω = λ, the empty string. Thus it is necessary and sufficient to prove that,

for every integer j such that 0 ≤ j ≤ n− 1, δ⋆(q0, λ) = qj if and only if λ ∈ Sj .

Either j = 0 or 1 ≤ j ≤ n− 1. These cases are considered separately, below.

• If j = 0 then it follows by the definition of the “extended transition function” that

δ⋆(q0, λ) = q0 = qj ,

so that it is now necessary and sufficient to show that λ ∈ Sj . Since j = 0, Sj = S0, and

this follows by property (b), as given above.
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• If 1 ≤ j ≤ n−1 then it follows, again by the definition of the “extended transition function”,

that

δ⋆(q0, λ) = q0 6= qj

so that it is now necessary and sufficient to show that λ /∈ Sj . Now, as noted above,

λ ∈ S0 and it follows by property (a) that λ belongs to exactly one of S0, S1, . . . , Sn−1.

Thus λ does not belong to Sj (since j 6= 0). That is, λ /∈ Sj , as desired.

Thus δ⋆(λ) = qj if and only if λ ∈ Sj , for every integer j such that 0 ≤ j ≤ n − 1, as required

here.

Inductive Step: Let k be an integer such that k ≥ 0. it is now necessary and sufficient (for

the Inductive Step) to use the following “Inductive Hypothesis” to prove the following “Inductive

Claim”.

Inductive Hypothesis: The following property is satisfied for every string ω ∈ Σ⋆

such that |ω| = k: For every integer j such that 0 ≤ j ≤ n − 1, δ⋆(q0, ω) = qj if

and only if ω ∈ Sj .

Inductive Claim: The following property is satisfied for every string ω ∈ Σ⋆ such

that |ω| = k+ 1: For every integer j such that 0 ≤ j ≤ n− 1, δ⋆(q0, ω) = qj if and

only if ω ∈ Sj .

With that noted, let ω be a string in Σ⋆ such that |ω| = k + 1 — so that we now wish to prove

(for this string) that, for every integer j such that 0 ≤ j ≤ n − 1, δ⋆(q0, ω) = qj if and only if

ω ∈ Sj .

Since k ≥ 0, k + 1 ≥ 1, so that |ω| ≥ 1. Thus

ω = µ · σ

for some string µ ∈ Σ⋆ such that |µ| = k, and for some symbol σ ∈ Σ.

Let ℓ be an integer such that 0 ≤ ℓ ≤ n− 1 and such that

δ⋆(q0, µ) = qℓ. (1)

Then — since µ is a string in Σ⋆ such that |µ| = k — It follows, by the Inductive Hypothesis,

that δ⋆(q0, µ) = qh if and only if µ ∈ Sh, for every integer h such that 0 ≤ h ≤ n − 1. Thus

µ ∈ Sℓ, by the equation at line (1) and — since property (a) is satisfied — µ /∈ Sh for any

integer h such that 0 ≤ h ≤ n− 1 and h 6= ℓ.

Let j be an integer such that 0 ≤ j ≤ n − 1, so that we now wish to prove that δ⋆(q0, ω) = qj
if and only if ω ∈ Sj . Either qj = δ(qℓ, σ) or qj 6= δ(qℓ, σ). These cases are considered

separately, below.
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• If qj = δ(qℓ, σ) then

δ⋆(q0, ω) = δ⋆(q0, µ · σ) (since ω = µ · σ)

= δ(δ⋆(q0, µ), σ) (by the results of Lecture #2)

= δ(qℓ, σ) (by the equation at line (1)).

Thus δ⋆(q0, ω) = qj , and we now wish to prove that ω ∈ Sj .

As noted above, µ ∈ Sℓ. Since qj = δ(qℓ, σ), it follows by property (e) (using ℓ in place

of the integer called i, and using µ in place of the string called ω) that

ω = µ · σ ⊆ {ν · σ | ν ∈ Sℓ} ⊆ Sj.

That is, ω ∈ Sj as desired.

• If qj 6= δ(qℓ, σ) then δ⋆(q0, ω) 6= qj because δ⋆(q0, ω) = δ(qℓ, σ), as shown above — and

we now wish to prove that ω /∈ Sj . Set h to be the integer such that 0 ≤ h ≤ n − 1 and

δ(qℓ, σ) = qh. Then property (e) can be applied, once again, to argue that

ω = µ · σ ∈ {ν · σ | ν ∈ Sℓ} ⊆ Sh.

Now, since qh = δ(qℓ, σ) 6= qj , h 6= j and it follows by property (a) that ω /∈ Sj (since this

property now implies that Sh ∩ Sh = ∅) — as desired.

Thus δ⋆(q0, ω) = qj if and only if ω ∈ Sj , for every integer j such that 0 ≤ j ≤ n − 1. Since

ω was an arbitrarily chosen string in Σ⋆ such that |ω| = k + 1, this establishes the Inductive

Claim — as needed to complete the Inductive Step.

The claim now follows by induction on the length of ω.

It remains only to use the above claim, and conditions (c) and (d) (from the statement of

Theorem 1) to prove that L(M) = L. As is often the case, it easiest to see this if we split this

into two tasks, namely, proving that L(M) ⊆ L, and proving that L ⊆ L(M).

Lemma 3. Let L ⊆ Σ⋆, for an alphabet Σ, and let

M = (Q,Σ, δ, q0, F )

with the same alphabet Σ. Suppose that (after renaming states, if needed)

Q = {q0, q1, . . . , qn−1}

where n = |Q| ≥ 1. Suppose, as well, that

S0, S1, . . . , Sn−1

are subsets of Σ⋆ such that properties (a), (b), (c) and (e) given in Theorem 1 are satisfied

— that is, properties (a), (b), and (e) are satisfied and (since property (c) is satisfied, as well)

Si ⊆ L for every integer i such that 0 ≤ i ≤ n− 1 and qi ∈ F . Then L(M) ⊆ L.
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Proof. Let ω ∈ Σ⋆ such that ω ∈ L(M), that is, such that M accepts ω. It is necessary, and

sufficient, to prove that ω ∈ L.

Since M accepts ω, δ⋆(q0, ω) = qj for some integer j such that 0 ≤ j ≤ n − 1 and qj ∈ F .

Since properties (a), (b) and (e) are satisfied, it follows by Lemma 2 that ω ∈ Sj . Since qj ∈ F ,

it follows by property (c) that Sj ⊆ L. Thus ω ∈ L, as needed to establish the claim.

Lemma 4. Let L ⊆ Σ⋆, for an alphabet Σ, and let

M = (Q,Σ, δ, q0, F )

with the same alphabet Σ. Suppose that (after renaming states, if needed)

Q = {q0, q1, . . . , qn−1}

where n = |Q| ≥ 1. Suppose, as well, that

S0, S1, . . . , Sn−1

are subsets of Σ⋆ such that properties (a), (b), (d) and (e) given in Theorem 1 are satisfied

— that is, properties (a), (b) and (e) are satisfied and (since property (d) is satisfied, as well)

Si ∩ L = ∅ for every integer i such that 0 ≤ i ≤ n− 1 and qi /∈ F . Then L ⊆ L(M).

Proof. Let ω ∈ Σ⋆ such that ω ∈ L. It is necessary and sufficient to prove that L ⊆ L(M),
that is, M accepts ω.

Suppose, to obtain a contradiction, that M does not accept ω — that, is, δ⋆(q0, ω) = qj for

some integer j such that 0 ≤ j ≤ n − 1 and qj /∈ F . Since properties (a), (b) and (e) are

satisfied, it follows by Lemma 2 that ω ∈ Sj . Since qj /∈ F , it follows by property (d) that

Sj ∩ L = ∅. Thus ω /∈ L and, since ω was chosen to be in L, a contradiction has been

obtained. Our assumption must, therefore be false. That is, M accepts ω, so that ω ∈ L(M).

Since ω was arbitrarily chosen from L it follows that L ⊆ L(M), as claimed.

Proof of Theorem 1. Theorem 1 follows directly from Lemmas 3 and 4, which have now been

proved.
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