Lecture #4: DFA Design and Verification — Part Two
Proof of a Significant Technical Result

The notes for this lecture included the following “significant technical result”.

Theorem 1 (Correctness of a DFA). Let L C X*, for an alphabet ¥, and let
M =(Q,%,0,q0, F)
with the same alphabet Y. Suppose that (after renaming states, if needed)
Q=1{90,q1,--,qn-1}
where n = |Q| > 1. Suppose, as well, that
S0,51, -y Sp_1

are subsets of ¥* such that the following properties are satisfied.

(a) Every string in ¥* belongs to exactly one of

50,515+ St

(b) A e Sy.
(c) S; C L forevery integeri suchthat0 <i<n-—1andgq; € F.
(d) S; N L = () for every integeri suchthat0 <i<n-—1andgq; ¢ F.

(e) The following property is satisfied, for every integer i such that(0 < ¢ < n — 1 and for every
symbol o € X.:

“Suppose that q; = §(q;,0) (sothat0 < j <n—1). Then{w-o |w € S;} C S;.”
Then L(M) = L.

This document provides a proof of this result.

To begin, consider the following claim, which asserts that the “extended transition function” of
the DFA models the relationship between the given subsets of ¥*, and states of the DFA, that
one would expect.



Lemma 2. Let L C ¥*, for an alphabet ., and let
M =(Q,%,0,q0, F)
with the same alphabet Y. Suppose that (after renaming states, if needed)
Q={q,q1,--,qn-1}
where n = |Q| > 1. Suppose, as well, that
S0,51, -y Sp_1

are subsets of ¥* such that properties (a), (b), and (e), given in Theorem 1 are satisfied — that
is,

(a) Every string in ¥* belongs to exactly one of

507517' . 7Sn—1-

(b) X € Sp.

(e) The following property is satisfied, for every integer i such that(0 < ¢ < n — 1 and for every
symbol o € X:

“Suppose that q; = §(q;,0) (sothat0 < j <n—1). Then{w-o |w € S;} C S;.”

Then the following holds, for every string w € ¥*: For every integer j such that0 < j <n —1,
0*(qo,w) = ¢; ifand only ifw € S;.

Proof. The result will be proved by induction on the length of the string w. The standard
form of mathematical induction will be used, and the case that |w| = 0 will be considered in
the basis.

Basis: If |w| = 0then w = A, the empty string. Thus it is necessary and sufficient to prove that,
for every integer j such that 0 < j <n — 1, 6*(qo,A) = g;ifand only if A € S;.

Either j =0 or 1 < j < n — 1. These cases are considered separately, below.
+ If j = 0 then it follows by the definition of the “extended transition function” that

5*((]07 /\) =40 = ¢qj,

so that it is now necessary and sufficient to show that A € ;. Since j = 0, S; = Sy, and
this follows by property (b), as given above.



« If 1 < 57 < n—1thenitfollows, again by the definition of the “extended transition function”,
that

(g0, \) = qo0 # qj

so that it is now necessary and sufficient to show that A ¢ S;. Now, as noted above,
A € 5y and it follows by property (a) that A belongs to exactly one of Sy, S1,...,5._1.
Thus XA does not belong to S; (since j # 0). Thatis, A ¢ S;, as desired.

Thus §*(X\) = g; if and only if A € S;, for every integer j such that 0 < j < n — 1, as required
here.

Inductive Step: Let k be an integer such that £ > 0. it is now necessary and sufficient (for
the Inductive Step) to use the following “Inductive Hypothesis” to prove the following “Inductive
Claim”.

Inductive Hypothesis: The following property is satisfied for every string w € 3*
such that |w| = k: For every integer j such that 0 < j <n —1, §*(q,w) = g, if
andonly if w € S;.

Inductive Claim: The following property is satisfied for every string w € ¥* such
that |w| = k + 1: For every integer j such that 0 < j <n — 1, §*(q,w) = g; if and
only ifw € Sj.

With that noted, let w be a string in X* such that |w| = k + 1 — so that we now wish to prove
(for this string) that, for every integer j such that 0 < j < n — 1, §*(qo,w) = g; if and only if
w € Sj.

Since k > 0, k+1 > 1, so that |w| > 1. Thus
w=Uu-o
for some string 1 € ¥* such that || = &, and for some symbol o € X.

Let £ be an integer such that 0 < ¢ < n — 1 and such that

8 (qo, 1) = qe- (1)

Then — since p is a string in X* such that |u| = k — It follows, by the Inductive Hypothesis,
that 9*(qo, ) = g, if and only if © € Sy, for every integer h such that 0 < h < n — 1. Thus
p € Sy, by the equation at line (1) and — since property (a) is satisfied — u ¢ Sy, for any
integer h suchthat0 < h <n—1andh # /.

Let j be an integer such that 0 < j < n — 1, so that we now wish to prove that 6*(qp,w) = g¢;
if and only if w € S;. Either ¢; = d(qe,0) or gj # (g, 0). These cases are considered
separately, below.



* If ¢; = d(qe, 0) then

6*(qo,w) = 0"(qo, - 0) (since w = p - o)
= 6(0"(qo, p),0) (by the results of Lecture #2)
= d(qe,0) (by the equation at line (1)).

Thus 6*(¢go,w) = g;, and we now wish to prove that w € 5.

As noted above, u € S;. Since q; = 0(qe, o), it follows by property (e) (using ¢ in place
of the integer called 4, and using u in place of the string called w) that

w=p-0cC{rv-o|lveS}CS;
Thatis, w € S; as desired.

* If g; # 6(qe, 0) then 6 (qo,w) # ¢; because 6*(qo,w) = d(ge, o), as shown above — and
we now wish to prove that w ¢ S;. Set h to be the integer such that 0 < h <n — 1 and
d(qe, o) = qn. Then property (e) can be applied, once again, to argue that

w=p-oce{v-olvesS} CSh.
Now, since g, = d(q¢,0) # q;, h # j and it follows by property (a) that w ¢ S; (since this

property now implies that S;, N S}, = ) — as desired.

Thus 6*(qo,w) = g¢; if and only if w € S}, for every integer j such that 0 < j < n — 1. Since
w was an arbitrarily chosen string in X* such that |w| = k + 1, this establishes the Inductive
Claim — as needed to complete the Inductive Step.

The claim now follows by induction on the length of w. O

It remains only to use the above claim, and conditions (c) and (d) (from the statement of
Theorem 1) to prove that L(M) = L. As is often the case, it easiest to see this if we split this
into two tasks, namely, proving that L(M) C L, and proving that L C L(M).

Lemma 3. Let L C X*, for an alphabet ¥, and let
M =(Q,%,6,q0, F)
with the same alphabet Y.. Suppose that (after renaming states, if needed)
Q=1{90,q1,--,qn-1}
where n = |Q| > 1. Suppose, as well, that
S0y 51, -+ Sn-1

are subsets of ¥* such that properties (a), (b), (c) and (e) given in Theorem 1 are satisfied
— that is, properties (a), (b), and (e) are satisfied and (since property (c) is satisfied, as well)
S; C L for every integeri such that0 <i<n—1andgq; € F. Then L(M) C L.
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Proof. Let w € ¥* such that w € L(M), that is, such that M accepts w. It is necessary, and
sufficient, to prove that w € L.

Since M accepts w, 0*(qo,w) = g; for some integer j such that0 < j <n —1andg; € F.
Since properties (a), (b) and (e) are satisfied, it follows by Lemma 2 that w € Sj. Since ¢; € F),
it follows by property (c) that S; C L. Thus w € L, as needed to establish the claim. O

Lemma 4. Let L C X*, for an alphabet ¥, and let
M - (Q72757QO7F)
with the same alphabet Y. Suppose that (after renaming states, if needed)

Q - {q07q17' .. 7Qn—l}

where n = |Q| > 1. Suppose, as well, that
S0, 51, .., 801

are subsets of ¥* such that properties (a), (b), (d) and (e) given in Theorem 1 are satisfied
— that is, properties (a), (b) and (e) are satisfied and (since property (d) is satisfied, as well)
S; N L =) for every integeri suchthat0 <i <n—1andq; ¢ F. Then L C L(M).

Proof. Let w € ¥* such that w € L. It is necessary and sufficient to prove that L C L(M),
that is, M accepts w.

Suppose, to obtain a contradiction, that M does not accept w — that, is, *(go,w) = g; for
some integer j such that 0 < j < n —1and ¢; ¢ F. Since properties (a), (b) and (e) are
satisfied, it follows by Lemma 2 that w € S;. Since ¢; ¢ F, it follows by property (d) that
S;NL =10. Thus w ¢ L and, since w was chosen to be in L, a contradiction has been
obtained. Our assumption must, therefore be false. That is, M accepts w, so that w € L(M).

Since w was arbitrarily chosen from L it follows that L C L(M), as claimed. O

Proof of Theorem 1. Theorem 1 follows directly from Lemmas 3 and 4, which have now been
proved. O



