
Lecture #4: DFA Design and Verification — Part Two

Completion of Another Example

Problem To Be Solved

Let Σ = {a,b,c}. A supplement for the previous lecture concerned the design of a determin-

istic finite automaton for the language

L = {ω ∈ Σ⋆ | ω includes at least one “a”}

The following deterministic finite automaton was obtained:

qnostart qyes

b, c

a

a, b, c

As the rest of this document shows, information that was discovered during the design process,

can be used to develop a proof that this DFA has the desired language.

Confirming That We Have a DFA with Alphabet Σ

To begin, let us recall that

M = (Q,Σ, δ, qno, F )

where the components of M are as follows.

• Σ = {a,b,c} — the same alphabet as used to define the language L.

• Q = {qno, qyes} — a finite, nonempty set of states such that Q ∩ Σ = {∅}.

• The start state, qno, is a state in Q.

• The set F = {qyes} of accepting states is a subset of Q.

• The transition function is a well-defined total function δ : Q × Σ → Q. Indeed, an

inspection of the transition function shows that this function can also be described using

the following transition table.
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(a) Every string in Σ⋆ belongs to exactly one of Syes or Sno (needed since Q = {qyes, qno},

and Syes and Sno are the subsets of Σ⋆ corresponding to qyes and qno, respectively).

(b) λ ∈ Sno (needed since Sno corresponds to the start state, qno).

(c) Syes ⊆ L (needed since the state qyes, corresponding to the set Syes, belongs to F ).

(d) Sno ∩ L = ∅ (needed since the state qno, corresponding to the set Sno, does not belong

to F ).

(e) The following properties are satisfied.

(i) {ω · a | ω ∈ Sno} ⊆ Syes (needed since δ(qno,a) = qyes).

(ii) {ω · b | ω ∈ Sno} ⊆ Sno (needed since δ(qno,b) = qno).

(iii) {ω · c | ω ∈ Sno} ⊆ Sno (needed since δ(qno,c) = qno).

(iv) {ω · a | ω ∈ Syes} ⊆ Syes (needed since δ(qyes,a) = qyes).

(v) {ω · b | ω ∈ Syes} ⊆ Syes (needed since δ(qyes,b) = qyes).

(vi) {ω · c | ω ∈ Syes} ⊆ Syes (needed since δ(qyes,c) = qyes).

Figure 1: Properties Used to Prove That L(M) = L

a b c

qno qyes qno qno

qyes qyes qyes qyes

Thus this is a well-defined deterministic finite automaton with alphabet Σ — so its language,

L(M), is a subset of Σ⋆ — just like L is. It remains only to prove that these are the same

subset of Σ⋆, that is, L(M) = L.

Confirming that L(M) = L

Recall that the lecture notes introduced a “key technical claim” that could be used to prove

that a deterministic finite automaton has a given language. In order to apply this result, the

properties shown in Figure 1, above, must all be shown to hold.

Since the above deterministic finite automaton has only two states — whose corresponding

subsets of Σ⋆ are the language L and its complement —it is easy to show that properties

(a)–(d) are satisfied. Proving condition (e) is not quite as straightforward — primarily because

it includes quite a few relationships between sets that must be checked.

Lemma 1. Each of the conditions shown in property (e) (as shown in Figure 1) is satisfied.
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Proof. Each of the claimed relationships can be established by considering the definitions of

the subsets of Σ⋆ that are mentioned in the claims.

• Let ω ∈ Σ⋆ such that ω ∈ Sno, so that ω does not include an “a”.

The string ω · a certainly does include an “a”, since it ends with a copy of this symbol, so

ω · a ∈ Syes. On the other hand, neither of the strings ω · b or ω · c include an “a”, since

there are no copies of “a” in ω, so that ω · b ∈ Sno and ω · b ∈ Sno. Since the string ω

was arbitrarily chosen such that ω ∈ Sno it follows that

{ω · a | ω ∈ Sno} ⊆ Syes,

{ω · b | ω ∈ Sno} ⊆ Sno,

and

{ω · c | ω ∈ Sno} ⊆ Sno.

That is, conditions (i), (ii) and (iii) are satisfied.

• Let ω ∈ Σ⋆ such that ω ∈ Syes, so that ω includes at least one “a”. Then ω · σ must

also include at least one “a”, for any symbol σ ∈ Σ, since ω is a substring of ω · σ. Thus

ω · σ ∈ Syes, for all σ ∈ Σ. That is, ω · a ∈ Syes, ω · b ∈ Syes, and ω · c ∈ Syes.

Since the string ω was arbitrarily chosen such that ω ∈ Syes, it now follows that

{ω · a | ω ∈ Syes} ⊆ Syes,

{ω · b | ω ∈ Syes} ⊆ Syes,

and

{ω · c | ω ∈ Syes} ⊆ Syes.

That is, conditions (iv), (v) and (vi) are satisfied, as needed to establish the claim.

Theorem 2. L(M) = L.

Proof. This result will be established by applying the “Correctness of a DFA” theorem that was

introduced in the notes for this lecture. An examination of the statement of that theorem, the

language L, and the above DFA confirms that it is necessary, and sufficient, to show that each

of the properties that are listed in Figure 1 are satisfied, in order to confirm that L(M) = L.

“Correctness of a DFA” theorem that was introduced in the notes for this lecture.

• Let ω ∈ Σ⋆. Then either ω includes at least one “a”, so that ω ∈ Syes, or ω does not

include an “a”, so that ω ∈ Sno. That is, ω ∈ Syes ∪ Sno. Since ω was arbitrarily chosen

from Σ⋆, it follows that every string in Σ⋆ belongs to at least one of the sets Syes or Sno.

On the other hand, Syes ∩Sno = ∅ — for if ω belonged to both Syes and Sno then ω would

have to include at least one “a” (since ω ∈ Syes) and no a’s at all (since ω ∈ Sno) and

both of these conditions cannot be satisfied at the same time. Thus every string in Σ⋆

belongs to exactly one of the subsets Syes and Sno. That is, property (a) is satisfied.
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• Since the empty string, λ does not include any a’s, λ ∈ Sno — and property (b) is

satisfied.

• Since Syes = {ω ∈ Σ⋆ | ω includes at least one “a”} = L, Syes ⊆ L, and property (c) is

satisfied.

• As noted above, Syes∩Sno = ∅ — so that Sno∩L = ∅, since Syes = L. Thus property (d)

is satisfied.

• Lemma 1 implies that property (e) is satisfied.

Since all the properties listed in Figure 1 are satisfied, it now follows by the theorem concerning

the “correctness of a DFA”, from the lecture notes, that L(M) = L, as claimed.

More About This Example

This example is considerably shorter and simpler than the first one (even though more details

are given than is necessary, once again) — because the deterministic finite automaton, being

considered, here, has fewer states than the deterministic finite automaton in the first example

did.

It is certainly not a mistake to present a different (correct) deterministic finite automaton than

the one given as a solution for a problem — but a proof of the correctness of the determin-

istic finite automaton will generally be longer, and more complicated, for a deterministic finite

automaton with lots of states than it is for a deterministic finite automaton with only a few states.
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