Computer Science 351 DFA Design and Verification — Part Two

Instructor: Wayne Eberly

Department of Computer Science University of Calgary

Lecture #4

Goals for Today

Goals for Today:

- *Conclusion* of a presentation of a process that can be used to *design* a deterministic finite automaton that has a given language.
- Description of a process to *prove* that a given deterministic finite automaton has a given language

Ongoing Example

The process being developed will be used to design a deterministic finite automata for the following language over the alphabet $\Sigma = \{a, b, c\}$:

 $\bar L = \{\omega \in \bar \Sigma^\star \mid \text{either} \ \omega \text{ does not include an ``a''} \}$ or ω does not include a "b"}.

Clarification: In the definition of *L*, "or" does not mean "exclusive or" — *both* conditions might be satisfied. Thus *L* includes all the strings that only include c's.

We started by considering *what a DFA must remember about the string that has been processed, so far*.

• *Our Answer, So Far:* We *guessed* that the DFA must remember whether both an "la" and a "lb" have already been seen: The string *is* in the desired the language if this is not true yet — but it it is *not* in the language if this *is* true.

This was used to participation the set, Σ^* , of all strings over Σ , in to a pair of subsets, namely

$$
S_1 = S_{yes} = \{ \omega \in \Sigma^* \mid \text{either } \omega \text{ does not include an "a" } \text{ or } \omega \text{ does not include a "b" } \}
$$

and

 $S_0 = S_{\text{no}} = \{ \omega \in \Sigma^* \mid \omega \text{ includes both an "a" and a "b" } \}.$

Several *necessary conditions* — or "sanity checks" — were considered.

1. We checked that only *finitely many* subsets of Σ^{*} had been identified.

This test passed — because two subsets $(S_0$ and S_1) were identified. Let *n* be the number of subsets identified, so that $n = 2$.

2. We checked that *every string belongs to exactly one of these subsets*.

This test passed too — because S_0 is the desired language, L, and S_1 is the set of strings that *do not* belong to *L*. . . so these sets correspond to the two possible answers for a "Yes/No" question.

- The empty string, λ , belongs to S_0 . We would generally *renumber* the states, at this point, if necessary — because we generally want this condition, " $\lambda \in S_0$ " to be true.
- We can now associate a *state* with each of our subsets:
	- State q_{ves} corresponds to $S_0 = S_{\text{ves}}$. Since $\lambda \in S_0$ q_{ves} should be the start state for the DFA we wish to design.
	- State q_{no} corresponds to $S_1 = S_{\text{no}}$.

• The desired relationship between subsets and states can now be given more precisely:

For each state q and subset S of Σ [⋆] *corresponding to q, we want it to be the case that*

 $\delta^{\star}(q_0,\omega) = q$ if and only if $\omega \in S$

for every string $\omega \in \Sigma^*$ *— where* q_0 *is the start state (so that* $q_0 = q_{\text{ves}}$ *, for this example).*

• In particular, we want the following conditions to be satisfied, for every string $\omega \in \Sigma^\star$:

•
$$
\delta^*(q_{\text{yes}}, \omega) = q_{\text{yes}}
$$
 if and only if $\omega \in S_{\text{yes}}$, and

• $\delta^*(q_{\text{yes}}, \omega) = q_{\text{no}}$ if and only if $\omega \in S_{\text{no}}$.

Another necessary condition — or "sanity check" was checked after that. Suppose subsets

$$
\mathcal{S}_0, \mathcal{S}_1, \ldots, \mathcal{S}_{n-1}
$$

of Σ^{\star} have been identified — so that $n=2,$ $S_{0}=S_{\mathrm{yes}}$ and $S_1 = S_{\text{no}}$ in this example. Suppose state q_i corresponds to subset S_i for 0 \leq *i* \leq *n* $-$ 1 — so that $q_0 = q_{\sf yes}$ and $q_1 = q_{\sf no}$ in this example.

3. For every integer *i* such that $0 \le i \le n - 1$ either $S_i \subseteq L$ and q_i is an accepting state — or $S_i \cap L = \emptyset$ — and q_i is *not* an accepting state.

This test was also passed, because $S_{\text{ves}} = L$ (so q_{ves} is an accepting state) and $S_{n0} \cap L = \emptyset$ (and q_{n0} is not an accepting state).

A final necessary condition — or "sanity check" was also checked:

4. *Transitions must be well defined:* For every integer *i* such that $0 \le i \le n-1$ and symbol $\sigma \in \Sigma$ there must exist an integer j such that 0 \leq j \leq $n-1$ and $\delta(\boldsymbol{q}_i,\sigma)=\boldsymbol{q}_j.$ Then it must also be true that

$$
\{\omega\cdot\sigma\mid\omega\in\mathcal{S}_i\}\subseteq\mathcal{S}_j.
$$

Good News: Since $\omega \cdot \sigma \in S_{\text{no}}$, whenever $\omega \in S_{\text{no}}$ — so that

$$
\{\omega\cdot\sigma\mid\omega\in S_{\textsf{no}}\}\subseteq S_{\textsf{no}}
$$

for all σ ∈ Σ, *the transitions out of Sno were well-defined*.

Not-So-Good News: While

$$
\{\omega\cdot c\mid \omega\in S_{\text{yes}}\}\subseteq S_{\text{yes}},
$$

so that the transition for *q*yes and "c" is well-defined (and $\delta(q_{\rm ves}, c) = q_{\rm ves}$, it was also discovered that

$$
\{\omega\cdot a\mid \omega\in S_{\text{yes}}\}\not\subseteq S_{\text{yes}}\quad\text{and}\quad \{\omega\cdot a\mid \omega\in S_{\text{yes}}\}\not\subseteq S_{\text{no}}
$$

 $-$ so that the transition for q_{ves} and "a" is not well-defined $$ and that

 $\{\omega \cdot b \mid \omega \in S_{\text{ves}}\} \not\subseteq S_{\text{ves}}$ and $\{\omega \cdot b \mid \omega \in S_{\text{ves}}\} \not\subseteq S_{\text{no}}$

— so that the transition for q_{ves} and "b" is not well-defined, either.

What We Concluded:

The fourth "sanity check" has failed.

• *Further Conclusion:* The automaton must remember *different* information — or, possibly, *additional* information — in order to recognize the language *L*.

All is Not Lost!

However, what we have done so far is useful — because it can help us to discover the "different information — or, possibly additional information" that is needed.

Application to the Example — Starting a Second Attempt

Hypothesis: In order to recognize *L* you must remember the following information.

1. You must remember whether an "a" has already been seen.

Explanation: This is needed to decide what to do if the string seen so far is in *L*, but an "a" is the next symbol that is seen.

2. You must *also* remember whether a "b" has already been seen.

Explanation: This is needed to decide what to do if the string seen so far is in *L* but a "b" is the next symbol that is seen.

Wait a Minute! What Just Happened Here?

- Notice that we are *rolling back*, and *starting this design process all over again*.
- In particular: The above information is a new answer for the "question" that was considered at the *beginning* of this design process.
- However, *we have learned something from the first attempt* — and we are making use of new information that has been discovered — so that answers for questions will be different, and there is a chance that the process will complete, successfully, this time!
- This is one form of a process that is called *refinement*.

Proceeding with the "Rolled Back" Process

We continued by describing a finite collection of *subsets of* Σ^{*} — such that the information we are remembering, about a string $\omega \in \Sigma^\star$, is the same as remembering which, of these subsets, ω belongs to.

• Taken in combination this leads to $4 = 2 \times 2$ possibilities with corresponding subsets of Σ^* as follows.

Application to the Example — A Second Attempt

1. The string seen so far does not include any a's *or* any b's, so that it belongs to the set

$$
S_{\emptyset} = \{ \omega \in \Sigma^{\star} \mid \omega \text{ only includes } c's \}.
$$

2. At least one "a" has been seen but no b's have, so that the string seen so far belongs to the set

 $S_a = \{ \omega \in \Sigma^* \mid \omega \text{ includes at least one "a" but no b's} \}.$

Application to the Example — A Second Attempt

3. At least one "b" has been seen but no a's have, so that the string seen so far belongs to the set

 $\mathcal{S}_b = \{ \omega \in \Sigma^{\star} \mid \omega \text{ includes at least one "b" but no a's} \}.$

4. The string seen so far includes both an "a" and a "b", so that it belongs to the set

 $\mathcal{S}_{\mathsf{no}} = \{\omega \in \Sigma^\star \mid \omega \text{ includes at least one "a"}\}$ and at least one "b"}.

Application to the Example — Comparing the Attempts

- *Note:* The final set, S_{no} , is the same as the set that was called *S_{no}* before this.
- On the other hand, S_{\emptyset} , S_{α} and S_{β} are all *subsets* of the set S_{yes} that we were working with before.
- So, we are remembering *more* information (instead of *different* information) — and we have *refined* the collection of sets (and the collection of states of an automaton) being used.

Proceeding with the "Rolled Back" Process

- The first "sanity check" is passed, once again: Only a finite number of subsets of Σ^* (and corresponding states) have been identified.
- The second "sanity check" is passed as well: It follows from the descriptions of *S*∅ , *Sa*, *S^b* and *S*no that every string in Σ [⋆] belongs to *exactly one* of these sets.

Let *q*∅ , *qa*, *q^b* and *q*no be states corresponding to the subsets *S*∅ , *Sa*, *S^b* and *S*no, respectively. Then, since $\lambda \in \mathcal{S}_{\emptyset},\,q_{\emptyset}$ is the start state for the automaton being designed.

• The third "sanity check" is also passed because S _{*©*} ⊂ *L*, $\mathcal{S}_a \subseteq \mathcal{L}, \, \mathcal{S}_b \subseteq \mathcal{L},$ and $\mathcal{S}_{\sf no} \cap \mathcal{L} = \emptyset.$ It follows from this that $q_{\emptyset},$ q_a and q_b are all accepting states, and q_{no} is not.

The Example, So Far

Here is what we have, so far.

Note: We are now back at the step where the first attempt failed.

Continuing the Example: Discovering Transactions

Consider transactions out of the state q_{\emptyset} , which corresponds to the set

 $S_{\emptyset} = \{ \omega \in \Sigma^* \mid \omega \text{ only include } c's \}.$

• If $\omega \in S_\emptyset$ then $\omega \cdot a$ includes at least one "a", but not a "b", so that $\omega \cdot a \in S_a$. Thus $\{\omega \cdot a \mid \omega \in S_0\} \subset S_a$, and

$$
\delta(q_{\emptyset},\mathtt{a})=q_{a}.
$$

• If $\omega \in S_\emptyset$ then $\omega \cdot \mathbf{b}$ includes at least one "b", but not an "a", so that $\omega \cdot b \in S_b$. Thus $\{\omega \cdot b \mid \omega \in S_0\} \subset S_b$, and

$$
\delta(q_{\emptyset},\mathtt{b})=q_{b}.
$$

• If $\omega \in S_\emptyset$ then $\omega \cdot c$ does not include an "a" or a "b", so that $\omega\cdot\mathtt{c}\in\mathcal{S}_\emptyset.$ Thus $\{\omega\cdot\mathtt{c} \mid \omega\in\mathcal{S}_\emptyset\}\subseteq\mathcal{S}_\emptyset,$ and

$$
\delta(q_{\emptyset},c)=q_{\emptyset}.
$$

The Example, So Far

Here is what we have, so far.

[Recap](#page-2-0) [Design — Part Two](#page-13-0) [Verification](#page-32-0) (Design — Part Two Verification of the Verification

Continuing the Example: Discovering Transactions Consider transactions out of the state *qa*, which corresponds to the set

 $\mathcal{S}_a = \{ \omega \in \Sigma^{\star} \mid \omega \text{ contains at least one "a" but no b's} \}.$

• If $\omega \in S_a$ then $\omega \cdot a$ includes at least one "a", but not a "b", so that $\omega \cdot a \in S_a$. Thus $\{\omega \cdot a \mid \omega \in S_a\} \subseteq S_a$, and

$$
\delta(q_a,a)=q_a.
$$

• If $\omega \in S_a$ then $\omega \cdot b$ includes both an "a" and a "b", so that $\omega \cdot b \in S_{\text{no}}$. Thus $\{\omega \cdot b \mid \omega \in S_a\} \subset S_{\text{no}}$, and

$$
\delta(q_a,b)=q_{\text{no}}.
$$

• If $\omega \in S_a$ then $\omega \cdot c$ includes at least one "a", but not a "b", so that $\omega \cdot c \in S_a$. Thus $\{\omega \cdot c \mid \omega \in S_a\} \subseteq S_a$, and

$$
\delta(q_a,c)=q_a.
$$

The Example, So Far

Here is what we have, so far.

Continuing the Example: Discovering Transactions Consider transactions out of the state *qb*, which corresponds to the set

 $\mathcal{S}_b = \{ \omega \in \Sigma^{\star} \mid \omega \text{ contains at least one "b" but no a's} \}.$

• If $\omega \in S_b$ then $\omega \cdot a$ includes both an "a" and a "b", so that $\omega \cdot a \in S_{\text{no}}$. Thus $\{\omega \cdot b \mid \omega \in S_a\} \subseteq S_{\text{no}}$, and

$$
\delta(q_b, \mathtt{a}) = q_{\text{no}}.
$$

• If $\omega \in S_b$ then $\omega \cdot b$ includes at least one "b", but not an "a", so that $\omega \cdot b \in S_b$. Thus $\{\omega \cdot b \mid \omega \in S_b\} \subset S_b$, and

$$
\delta(q_b, \mathbf{b}) = q_b.
$$

• If $\omega \in S_b$ then $\omega \cdot c$ includes at least one "b", but not an "a", so that $\omega \cdot c \in S_b$. Thus $\{\omega \cdot c \mid \omega \in S_b\} \subseteq S_b$, and

$$
\delta(q_b, c) = q_b.
$$

The Example, So Far

Here is what we have, so far.

Continuing the Example: Discovering Transactions

Consider transactions out of the state q_{no} , which corresponds to the set

 $S_{\text{no}} = \{\omega \in \Sigma^{\star} \mid \omega \text{ includes both an "a" and a "b"}\}.$

• If $\omega \in S_{\text{no}}$ then ω includes both an "a" and a "b", so that $\omega \cdot a, \omega \cdot b$, and $\omega \cdot c$ each contain both an "a" and a "b" as well. Thus $\omega \cdot a, \omega \cdot b, \omega \cdot c \in S_{\text{no}}$, implying that

$$
\{\omega\cdot\sigma\mid\omega\in S_{\text{no}}\}\subseteq S_{\text{no}}
$$

for $\sigma = a$, for $\sigma = b$, and for $\sigma = c$, so that

$$
\delta(q_{\text{no}},a)=\delta(q_{\text{no}},b)=\delta(q_{\text{no}},c)=q_{\text{no}}.
$$

Continuing the Example: Discovering Transitions

Hurray!

The fourth "sanity check" has now been passed as well. A DFA for the language *L* — which includes the transitions that have been identified — is as follows.

The Example, Concluded

Here is what we now have.

Suggestions

Suggestions about Figuring out "What to Remember"

- Consider the language to be recognized very carefully. This may be enough to figure out what to remember, or it may provide a good start.
- Learn from unsuccessful attempts instead of discarding them. This helped us to design a DFA for *L*!
- Study Examples and *Practice!* As you consider more DFA's for languages you will begin to recognize common situations and patterns.

Verification

We're not done yet!

- Why should you or anyone else believe that *this process is correct*, that is, that this process is guaranteed to provide what is claimed (a DFA for the given language) whenever you completed the process, without making mistakes?
- How could you *convince someone else* that a given DFA has a given language?

A Useful Result

Theorem (Correctness of a DFA) *Let L* ⊆ Σ ⋆ *, for an alphabet* Σ*, and let*

$$
M=(Q,\Sigma,\delta,q_0,F)
$$

with the same alphabet Σ*. Suppose that (after renaming states, if needed)*

$$
Q = \{q_0, q_1, \ldots, q_{n-1}\}
$$

where $n = |Q| > 1$ *. Suppose, as well, that*

$$
S_0,S_1,\ldots,S_{n-1}\,
$$

are subsets of Σ [⋆] *such that the following properties are satisfied.*

A Useful Result

(a) *Every string in* Σ [⋆] *belongs to exactly one of*

*S*0,*S*1, . . . ,*Sn*−1.

(b) $\lambda \in S_0$.

- (c) *Sⁱ* ⊆ *L for every integer i such that* 0 ≤ *i* ≤ *n* − 1 *and* $q_i \in F$.
- (d) $S_i ∩ L = ∅$ *for every integer i such that* $0 ≤ i ≤ n 1$ *and* $q_i \notin F$.
- (e) *The following property is satisfied, for every integer i such that* $0 \le i \le n - 1$ *and for every symbol* $\sigma \in \Sigma$ *: "Suppose that* $q_j = \delta(q_i, \sigma)$ *(so that* $0 \leq j \leq n - 1$ *). Then*

$$
\{\omega\cdot\sigma\mid\omega\in\mathcal{S}_i\}\subseteq\mathcal{S}_j.
$$

Then $L(M) = L$.

Using This Result

- A *proof* of this result is given in a supplement for this lecture — and this can be used if you — or someone else — is not convinced that *the claim* is correct, either.
- You do not need to know how to prove that this result is correct — but you can *use* it to prove that a given deterministic finite automaton has a given language.
- *Note:* If you used the "design process" that was presented in these notes, to design a DFA for the language *L* — and *M* is the DFA you obtained — then (if you carried out the design process completely) you have already discovered proofs of everything you need. That is: *proving correctness of your DFA* only involves re-organizing the information you have already discovered.

Using This Result

- Proving correctness of your DFA, when you *did not* use a design process like this one to develop it, might be considerably more difficult. Indeed, it might not be clear that your DFA is correct, at all!
- A completion of this example that is, and application of the above theorem to prove that the above deterministic finite automaton has the language *L*, is included in the supplement to this lecture.