Computer Science 351 DFA Design and Verification — Part Two

Instructor: Wayne Eberly

Department of Computer Science University of Calgary

Lecture #4

Goals for Today

Goals for Today:

- Conclusion of a presentation of a process that can be used to *design* a deterministic finite automaton that has a given language.
- Description of a process to *prove* that a given deterministic finite automaton has a given language

Ongoing Example

The process being developed will be used to design a deterministic finite automata for the following language over the alphabet $\Sigma = \{a, b, c\}$:

 $L = \{ \omega \in \Sigma^{\star} \mid \text{either } \omega \text{ does not include an "a"} \\ \text{or } \omega \text{ does not include a "b"} \}.$

Clarification: In the definition of L, "or" does not mean "exclusive or" — *both* conditions might be satisfied. Thus L includes all the strings that only include c's.

We started by considering *what a DFA must remember about the string that has been processed, so far.*

• *Our Answer, So Far:* We *guessed* that the DFA must remember whether both an "la" and a "lb" have already been seen: The string *is* in the desired the language if this is not true yet — but it it is *not* in the language if this *is* true.

This was used to participation the set, $\Sigma^{\star},$ of all strings over $\Sigma,$ in to a pair of subsets, namely

$$S_1 = S_{yes} = \{ \omega \in \Sigma^* \mid either \ \omega \ does \ not \ include \ an "a" \ or \ \omega \ does \ not \ include \ a "b" \}$$

and

 $S_0 = S_{no} = \{\omega \in \Sigma^* \mid \omega \text{ includes both an "a" and a "b"}\}.$

Several *necessary conditions* — or "sanity checks" — were considered.

1. We checked that only *finitely many* subsets of Σ^* had been identified.

This test passed — because two subsets (S_0 and S_1) were identified. Let *n* be the number of subsets identified, so that n = 2.

2. We checked that *every string belongs to exactly one of these subsets*.

This test passed too — because S_0 is the desired language, *L*, and S_1 is the set of strings that *do not* belong to *L*... so these sets correspond to the two possible answers for a "Yes/No" question.

- The empty string, λ, belongs to S₀. We would generally renumber the states, at this point, if necessary because we generally want this condition, "λ ∈ S₀" to be true.
- We can now associate a *state* with each of our subsets:
 - State q_{yes} corresponds to S₀ = S_{yes}. Since λ ∈ S₀ q_{yes} should be the start state for the DFA we wish to design.
 - State q_{no} corresponds to $S_1 = S_{no}$.

• The desired relationship between subsets and states can now be given more precisely:

For each state q and subset S of Σ^* corresponding to q, we want it to be the case that

 $\delta^{\star}(q_0,\omega) = q$ if and only if $\omega \in S$

for every string $\omega \in \Sigma^*$ — where q_0 is the start state (so that $q_0 = q_{yes}$, for this example).

 In particular, we want the following conditions to be satisfied, for every string ω ∈ Σ*:

•
$$\delta^{\star}(q_{\text{yes}}, \omega) = q_{\text{yes}}$$
 if and only if $\omega \in S_{\text{yes}}$, and

• $\delta^{\star}(q_{\text{yes}}, \omega) = q_{\text{no}}$ if and only if $\omega \in S_{\text{no}}$.

Another necessary condition — or "sanity check" was checked after that. Suppose subsets

$$S_0, S_1, \ldots, S_{n-1}$$

of Σ^* have been identified — so that n = 2, $S_0 = S_{yes}$ and $S_1 = S_{no}$ in this example. Suppose state q_i corresponds to subset S_i for $0 \le i \le n - 1$ — so that $q_0 = q_{yes}$ and $q_1 = q_{no}$ in this example.

3. For every integer *i* such that $0 \le i \le n-1$ either $S_i \subseteq L$ — and q_i is an accepting state — or $S_i \cap L = \emptyset$ — and q_i is *not* an accepting state.

This test was also passed, because $S_{yes} = L$ (so q_{yes} is an accepting state) and $S_{no} \cap L = \emptyset$ (and q_{no} is not an accepting state).

A final necessary condition — or "sanity check" was also checked:

4. **Transitions must be well defined:** For every integer *i* such that $0 \le i \le n-1$ and symbol $\sigma \in \Sigma$ there must exist an integer *j* such that $0 \le j \le n-1$ and $\delta(q_i, \sigma) = q_j$. Then it must also be true that

$$\{\omega \cdot \sigma \mid \omega \in S_i\} \subseteq S_j.$$

Good News: Since $\omega \cdot \sigma \in S_{no}$, whenever $\omega \in S_{no}$ — so that

$$\{\omega \cdot \sigma \mid \omega \in S_{no}\} \subseteq S_{no}$$

for all $\sigma \in \Sigma$, the transitions out of S_{no} were well-defined.

Not-So-Good News: While

$$\{\omega \cdot \mathbf{c} \mid \omega \in S_{\text{yes}}\} \subseteq S_{\text{yes}},$$

so that the transition for q_{yes} and "c" is well-defined (and $\delta(q_{yes}, c) = q_{yes}$, it was also discovered that

$$\{\omega \cdot \mathbf{a} \mid \omega \in S_{\mathsf{yes}}\} \not\subseteq S_{\mathsf{yes}} \text{ and } \{\omega \cdot \mathbf{a} \mid \omega \in S_{\mathsf{yes}}\} \not\subseteq S_{\mathsf{no}}$$

— so that the transition for $q_{\rm yes}$ and "a" is not well-defined — and that

 $\{\omega \cdot \mathbf{b} \mid \omega \in \mathbf{S}_{\mathsf{yes}}\} \not\subseteq \mathbf{S}_{\mathsf{yes}} \quad \mathsf{and} \quad \{\omega \cdot \mathbf{b} \mid \omega \in \mathbf{S}_{\mathsf{yes}}\} \not\subseteq \mathbf{S}_{\mathsf{no}}$

— so that the transition for q_{yes} and "b" is not well-defined, either.

Verification

Following a Design Process —- So Far

What We Concluded:

The fourth "sanity check" has failed.

• *Further Conclusion:* The automaton must remember *different* information — or, possibly, *additional* information — in order to recognize the language *L*.

Verification

All is Not Lost!

However, what we have done so far is useful — because it can help us to discover the "different information — or, possibly additional information" that is needed.

Application to the Example — Starting a Second Attempt

Hypothesis: In order to recognize *L* you must remember the following information.

1. You must remember whether an "a" has already been seen.

Explanation: This is needed to decide what to do if the string seen so far is in L, but an "a" is the next symbol that is seen.

2. You must *also* remember whether a "b" has already been seen.

Explanation: This is needed to decide what to do if the string seen so far is in L but a "b" is the next symbol that is seen.

Wait a Minute! What Just Happened Here?

- Notice that we are *rolling back*, and *starting this design process all over again*.
- In particular: The above information is a new answer for the "question" that was considered at the *beginning* of this design process.
- However, we have learned something from the first attempt — and we are making use of new information that has been discovered — so that answers for questions will be different, and there is a chance that the process will complete, successfully, this time!
- This is one form of a process that is called *refinement*.

Proceeding with the "Rolled Back" Process

We continued by describing a finite collection of *subsets of* Σ^* — such that the information we are remembering, about a string $\omega \in \Sigma^*$, is the same as remembering which, of these subsets, ω belongs to.

 Taken in combination this leads to 4 = 2 × 2 possibilities with corresponding subsets of Σ* as follows.

Application to the Example — A Second Attempt

1. The string seen so far does not include any a's *or* any b's, so that it belongs to the set

$$S_{\emptyset} = \{ \omega \in \Sigma^{\star} \mid \omega \text{ only includes c's} \}.$$

2. At least one "a" has been seen but no b's have, so that the string seen so far belongs to the set

 $S_a = \{ \omega \in \Sigma^* \mid \omega \text{ includes at least one "a" but no b's} \}.$

Application to the Example — A Second Attempt

3. At least one "b" has been seen but no a's have, so that the string seen so far belongs to the set

 $S_b = \{ \omega \in \Sigma^* \mid \omega \text{ includes at least one "b" but no a's} \}.$

4. The string seen so far includes both an "a" and a "b", so that it belongs to the set

 $S_{no} = \{ \omega \in \Sigma^* \mid \omega \text{ includes at least one "a"} \\ and at least one "b" \}.$

Application to the Example — Comparing the Attempts

- *Note:* The final set, *S*_{no}, is the same as the set that was called *S*_{no} before this.
- On the other hand, S_∅, S_a and S_b are all subsets of the set S_{ves} that we were working with before.
- So, we are remembering *more* information (instead of *different* information) and we have *refined* the collection of sets (and the collection of states of an automaton) being used.

Proceeding with the "Rolled Back" Process

- The first "sanity check" is passed, once again: Only a finite number of subsets of Σ* (and corresponding states) have been identified.
- The second "sanity check" is passed as well: It follows from the descriptions of S₀, S_a, S_b and S_{no} that every string in Σ* belongs to *exactly one* of these sets.

Let q_{\emptyset} , q_a , q_b and q_{no} be states corresponding to the subsets S_{\emptyset} , S_a , S_b and S_{no} , respectively. Then, since $\lambda \in S_{\emptyset}$, q_{\emptyset} is the start state for the automaton being designed.

The third "sanity check" is also passed because S_∅ ⊆ L,
 S_a ⊆ L, S_b ⊆ L, and S_{no} ∩ L = ∅. It follows from this that q_∅,
 q_a and q_b are all accepting states, and q_{no} is not.

Verification

The Example, So Far

Here is what we have, so far.

Note: We are now back at the step where the first attempt failed.

Continuing the Example: Discovering Transactions Consider transactions out of the state q_0 , which corresponds to

the set

 $\mathcal{S}_{\emptyset} = \{ \omega \in \Sigma^{\star} \mid \omega \text{ only include c's} \}.$

• If $\omega \in S_{\emptyset}$ then $\omega \cdot a$ includes at least one "a", but not a "b", so that $\omega \cdot a \in S_a$. Thus $\{\omega \cdot a \mid \omega \in S_{\emptyset}\} \subseteq S_a$, and

$$\delta(q_{\emptyset}, a) = q_a.$$

• If $\omega \in S_{\emptyset}$ then $\omega \cdot \mathbf{b}$ includes at least one "b", but not an "a", so that $\omega \cdot \mathbf{b} \in S_b$. Thus $\{\omega \cdot \mathbf{b} \mid \omega \in S_{\emptyset}\} \subseteq S_b$, and

$$\delta(q_{\emptyset}, b) = q_b.$$

• If $\omega \in S_{\emptyset}$ then $\omega \cdot c$ does not include an "a" or a "b", so that $\omega \cdot c \in S_{\emptyset}$. Thus $\{\omega \cdot c \mid \omega \in S_{\emptyset}\} \subseteq S_{\emptyset}$, and

$$\delta(q_{\emptyset}, c) = q_{\emptyset}.$$

Verification

The Example, So Far

Here is what we have, so far.

Continuing the Example: Discovering Transactions Consider transactions out of the state q_a , which corresponds to the set

 $S_a = \{ \omega \in \Sigma^* \mid \omega \text{ contains at least one "a" but no b's} \}.$

• If $\omega \in S_a$ then $\omega \cdot a$ includes at least one "a", but not a "b", so that $\omega \cdot a \in S_a$. Thus $\{\omega \cdot a \mid \omega \in S_a\} \subseteq S_a$, and

$$\delta(q_a, a) = q_a.$$

• If $\omega \in S_a$ then $\omega \cdot \mathbf{b}$ includes both an "a" and a "b", so that $\omega \cdot \mathbf{b} \in S_{no}$. Thus $\{\omega \cdot \mathbf{b} \mid \omega \in S_a\} \subseteq S_{no}$, and

$$\delta(q_a, b) = q_{no}.$$

If ω ∈ S_a then ω ⋅ c includes at least one "a", but not a "b", so that ω ⋅ c ∈ S_a. Thus {ω ⋅ c | ω ∈ S_a} ⊆ S_a, and

$$\delta(q_a, c) = q_a.$$

Verification

The Example, So Far

Here is what we have, so far.

Continuing the Example: Discovering Transactions Consider transactions out of the state q_b , which corresponds to the set

 $S_b = \{\omega \in \Sigma^* \mid \omega \text{ contains at least one "b" but no a's}\}.$

• If $\omega \in S_b$ then $\omega \cdot a$ includes both an "a" and a "b", so that $\omega \cdot a \in S_{no}$. Thus $\{\omega \cdot b \mid \omega \in S_a\} \subseteq S_{no}$, and

$$\delta(q_b, a) = q_{no}.$$

• If $\omega \in S_b$ then $\omega \cdot b$ includes at least one "b", but not an "a", so that $\omega \cdot b \in S_b$. Thus $\{\omega \cdot b \mid \omega \in S_b\} \subseteq S_b$, and

$$\delta(q_b, b) = q_b.$$

• If $\omega \in S_b$ then $\omega \cdot c$ includes at least one "b", but not an "a", so that $\omega \cdot c \in S_b$. Thus $\{\omega \cdot c \mid \omega \in S_b\} \subseteq S_b$, and

$$\delta(q_b, c) = q_b.$$

Recap

Verification

The Example, So Far

Here is what we have, so far.

Continuing the Example: Discovering Transactions

Consider transactions out of the state q_{no} , which corresponds to the set

 $S_{no} = \{ \omega \in \Sigma^* \mid \omega \text{ includes both an "a" and a "b"} \}.$

 If ω ∈ S_{no} then ω includes both an "a" and a "b", so that ω ⋅ a, ω ⋅ b, and ω ⋅ c each contain both an "a" and a "b" as well. Thus ω ⋅ a, ω ⋅ b, ω ⋅ c ∈ S_{no}, implying that

$$\{\omega \cdot \sigma \mid \omega \in S_{\mathsf{no}}\} \subseteq S_{\mathsf{no}}$$

for $\sigma = a$, for $\sigma = b$, and for $\sigma = c$, so that

$$\delta(q_{no}, a) = \delta(q_{no}, b) = \delta(q_{no}, c) = q_{no}.$$

Continuing the Example: Discovering Transitions

Hurray!

The fourth "sanity check" has now been passed as well. A DFA for the language L — which includes the transitions that have been identified — is as follows.

Verification

The Example, Concluded

Here is what we now have.

Suggestions

Suggestions about Figuring out "What to Remember"

- Consider the language to be recognized very carefully. This may be enough to figure out what to remember, or it may provide a good start.
- Learn from unsuccessful attempts instead of discarding them. This helped us to design a DFA for *L*!
- Study Examples and *Practice!* As you consider more DFA's for languages you will begin to recognize common situations and patterns.

Verification

We're not done yet!

- Why should you or anyone else believe that *this* process is correct, that is, that this process is guaranteed to provide what is claimed (a DFA for the given language) whenever you completed the process, without making mistakes?
- How could you *convince someone else* that a given DFA has a given language?

A Useful Result

Theorem (Correctness of a DFA) Let $L \subseteq \Sigma^*$, for an alphabet Σ , and let

$$M = (Q, \Sigma, \delta, q_0, F)$$

with the same alphabet Σ . Suppose that (after renaming states, if needed)

$$Q = \{q_0, q_1, \ldots, q_{n-1}\}$$

where $n = |Q| \ge 1$. Suppose, as well, that

$$S_0, S_1, \ldots, S_{n-1}$$

are subsets of Σ^* such that the following properties are satisfied.

A Useful Result

(a) Every string in Σ^* belongs to **exactly one** of

 $S_0, S_1, \ldots, S_{n-1}.$

(b) $\lambda \in S_0$.

- (c) $S_i \subseteq L$ for every integer *i* such that $0 \le i \le n-1$ and $q_i \in F$.
- (d) $S_i \cap L = \emptyset$ for every integer *i* such that $0 \le i \le n-1$ and $q_i \notin F$.
- (e) The following property is satisfied, for every integer i such that 0 ≤ i ≤ n − 1 and for every symbol σ ∈ Σ:
 "Suppose that q_j = δ(q_i, σ) (so that 0 ≤ j ≤ n − 1). Then

$$\{\omega \cdot \sigma \mid \omega \in S_i\} \subseteq S_j$$
."

Then L(M) = L.

Using This Result

- A *proof* of this result is given in a supplement for this lecture — and this can be used if you — or someone else — is not convinced that *the claim* is correct, either.
- You do not need to know how to prove that this result is correct — but you can *use* it to prove that a given deterministic finite automaton has a given language.
- Note: If you used the "design process" that was presented in these notes, to design a DFA for the language L — and M is the DFA you obtained — then (if you carried out the design process completely) you have already discovered proofs of everything you need. That is: *proving correctness of your DFA* only involves re-organizing the information you have already discovered.

Using This Result

- Proving correctness of your DFA, when you *did not* use a design process like this one to develop it, might be considerably more difficult. Indeed, it might not be clear that your DFA is correct, at all!
- A completion of this example that is, and application of the above theorem to prove that the above deterministic finite automaton has the language *L*, is included in the supplement to this lecture.