
Recap Design — Part Two Verification

Computer Science 351
DFA Design and Verification — Part Two

Instructor: Wayne Eberly

Department of Computer Science
University of Calgary

Lecture #4

Recap Design — Part Two Verification

Goals for Today

Goals for Today:

• Conclusion of a presentation of a process that can be used

to design a deterministic finite automaton that has a given

language.

• Description of a process to prove that a given

deterministic finite automaton has a given language

Recap Design — Part Two Verification

Ongoing Example

The process being developed will be used to design a

deterministic finite automata for the following language over the

alphabet Σ = {a,b,c}:

L = {ω ∈ Σ⋆ | either ω does not include an “a”

or ω does not include a “b”}.

Clarification: In the definition of L, “or” does not mean

“exclusive or” — both conditions might be satisfied. Thus L

includes all the strings that only include c’s.

Recap Design — Part Two Verification

Following a Design Process — So Far

We started by considering what a DFA must remember about

the string that has been processed, so far.

• Our Answer, So Far: We guessed that the DFA must

remember whether both an “la” and a “lb” have already

been seen: The string is in the desired the language if this

is not true yet — but it it is not in the language if this is true.

Recap Design — Part Two Verification

Following a Design Process — So Far

This was used to participation the set, Σ⋆, of all strings over Σ,

in to a pair of subsets, namely

S1 = Syes = {ω ∈ Σ⋆ | either ω does not include an “a”

or ω does not include a “b”}

and

S0 = Sno = {ω ∈ Σ⋆ | ω includes both an “a” and a “b”}.

Recap Design — Part Two Verification

Following a Design Process — So Far

Several necessary conditions — or “sanity checks” — were

considered.

1. We checked that only finitely many subsets of Σ⋆ had

been identified.

This test passed — because two subsets (S0 and S1) were

identified. Let n be the number of subsets identified, so

that n = 2.

2. We checked that every string belongs to exactly one of

these subsets.

This test passed too — because S0 is the desired

language, L, and S1 is the set of strings that do not belong

to L. . . so these sets correspond to the two possible

answers for a “Yes/No” question.

Recap Design — Part Two Verification

Following a Design Process — So Far

• The empty string, λ, belongs to S0. We would generally

renumber the states, at this point, if necessary — because

we generally want this condition, “λ ∈ S0” to be true.

• We can now associate a state with each of our subsets:
• State qyes corresponds to S0 = Syes. Since λ ∈ S0 qyes

should be the start state for the DFA we wish to design.

• State qno corresponds to S1 = Sno.

Recap Design — Part Two Verification

Following a Design Process — So Far

• The desired relationship between subsets and states can

now be given more precisely:

For each state q and subset S of Σ⋆ corresponding

to q, we want it to be the case that

δ⋆(q0, ω) = q if and only if ω ∈ S

for every string ω ∈ Σ⋆ — where q0 is the start state

(so that q0 = qyes, for this example).

• In particular, we want the following conditions to be

satisfied, for every string ω ∈ Σ⋆:

• δ⋆(qyes, ω) = qyes if and only if ω ∈ Syes, and
• δ⋆(qyes, ω) = qno if and only if ω ∈ Sno.

Recap Design — Part Two Verification

Following a Design Process — So Far

Another necessary condition — or “sanity check” was checked

after that. Suppose subsets

S0,S1, . . . ,Sn−1

of Σ⋆ have been identified — so that n = 2, S0 = Syes and

S1 = Sno in this example. Suppose state qi corresponds to

subset Si for 0 ≤ i ≤ n − 1 — so that q0 = qyes and q1 = qno in

this example.

3. For every integer i such that 0 ≤ i ≤ n − 1 either Si ⊆ L —

and qi is an accepting state — or Si ∩ L = ∅ — and qi is

not an accepting state.

This test was also passed, because Syes = L (so qyes is an

accepting state) and Sno ∩ L = ∅ (and qno is not an

accepting state).

Recap Design — Part Two Verification

Following a Design Process — So Far

A final necessary condition — or “sanity check” was also

checked:

4. Transitions must be well defined: For every integer i

such that 0 ≤ i ≤ n − 1 and symbol σ ∈ Σ there must exist

an integer j such that 0 ≤ j ≤ n − 1 and δ(qi , σ) = qj . Then

it must also be true that

{ω · σ | ω ∈ Si} ⊆ Sj .

Good News: Since ω · σ ∈ Sno, whenever ω ∈ Sno — so

that

{ω · σ | ω ∈ Sno} ⊆ Sno

for all σ ∈ Σ, the transitions out of Sno were well-defined.

Recap Design — Part Two Verification

Following a Design Process — So Far

Not-So-Good News: While

{ω · c | ω ∈ Syes} ⊆ Syes,

so that the transition for qyes and “c” is well-defined (and

δ(qyes,c) = qyes, it was also discovered that

{ω · a | ω ∈ Syes} 6⊆ Syes and {ω · a | ω ∈ Syes} 6⊆ Sno

— so that the transition for qyes and “a” is not well-defined —

and that

{ω · b | ω ∈ Syes} 6⊆ Syes and {ω · b | ω ∈ Syes} 6⊆ Sno

— so that the transition for qyes and “b” is not well-defined,

either.

Recap Design — Part Two Verification

Following a Design Process —- So Far

What We Concluded:

The fourth “sanity check”

has failed.

Recap Design — Part Two Verification

Following a Design Process — So Far

• Further Conclusion: The automaton must remember

different information — or, possibly, additional

information — in order to recognize the language L.

Recap Design — Part Two Verification

All is Not Lost!

However, what we have done so far is useful — because it can

help us to discover the “different information — or, possibly

additional information” that is needed.

Recap Design — Part Two Verification

Application to the Example —

Starting a Second Attempt

Hypothesis: In order to recognize L you must remember the

following information.

1. You must remember whether an “a” has already been

seen.

Explanation: This is needed to decide what to do if the

string seen so far is in L, but an “a” is the next symbol that

is seen.

2. You must also remember whether a “b” has already been

seen.

Explanation: This is needed to decide what to do if the

string seen so far is in L but a “b” is the next symbol that is

seen.

Recap Design — Part Two Verification

Wait a Minute! What Just Happened Here?

• Notice that we are rolling back, and starting this design

process all over again.

• In particular: The above information is a new answer for

the “question” that was considered at the beginning of this

design process.

• However, we have learned something from the first

attempt — and we are making use of new information that

has been discovered — so that answers for questions will

be different, and there is a chance that the process will

complete, successfully, this time!

• This is one form of a process that is called refinement.

Recap Design — Part Two Verification

Proceeding with the “Rolled Back” Process

We continued by describing a finite collection of subsets of Σ⋆

— such that the information we are remembering, about a

string ω ∈ Σ⋆, is the same as remembering which, of these

subsets, ω belongs to.

• Taken in combination this leads to 4 = 2 × 2 possibilities —

with corresponding subsets of Σ⋆ as follows.

Recap Design — Part Two Verification

Application to the Example — A Second Attempt

1. The string seen so far does not include any a’s or any b’s,

so that it belongs to the set

S∅ = {ω ∈ Σ⋆ | ω only includes c’s}.

2. At least one “a” has been seen but no b’s have, so that the

string seen so far belongs to the set

Sa = {ω ∈ Σ⋆ | ω includes at least one “a” but no b’s}.

Recap Design — Part Two Verification

Application to the Example — A Second Attempt

3. At least one “b” has been seen but no a’s have, so that the

string seen so far belongs to the set

Sb = {ω ∈ Σ⋆ | ω includes at least one “b” but no a’s}.

4. The string seen so far includes both an “a” and a “b”, so

that it belongs to the set

Sno = {ω ∈ Σ⋆ | ω includes at least one “a”

and at least one “b”}.

Recap Design — Part Two Verification

Application to the Example —

Comparing the Attempts

• Note: The final set, Sno, is the same as the set that was

called Sno before this.

• On the other hand, S∅, Sa and Sb are all subsets of the

set Syes that we were working with before.

• So, we are remembering more information (instead of

different information) — and we have refined the collection

of sets (and the collection of states of an automaton) being

used.

Recap Design — Part Two Verification

Proceeding with the “Rolled Back” Process

• The first “sanity check” is passed, once again: Only a finite

number of subsets of Σ⋆ (and corresponding states) have

been identified.

• The second “sanity check” is passed as well: It follows

from the descriptions of S∅, Sa, Sb and Sno that every

string in Σ⋆ belongs to exactly one of these sets.

Let q∅, qa, qb and qno be states corresponding to the

subsets S∅, Sa, Sb and Sno, respectively. Then, since

λ ∈ S∅, q∅ is the start state for the automaton being

designed.

• The third “sanity check” is also passed because S∅ ⊆ L,

Sa ⊆ L, Sb ⊆ L, and Sno ∩ L = ∅. It follows from this that q∅,

qa and qb are all accepting states, and qno is not.

Recap Design — Part Two Verification

The Example, So Far

Here is what we have, so far.

q∅start

qa

qb

qno

Note: We are now back at the step where the first attempt

failed.

Recap Design — Part Two Verification

Continuing the Example: Discovering Transactions
Consider transactions out of the state q∅, which corresponds to

the set

S∅ = {ω ∈ Σ⋆ | ω only include c’s}.

• If ω ∈ S∅ then ω · a includes at least one “a”, but not a “b”,

so that ω · a ∈ Sa. Thus {ω · a | ω ∈ S∅} ⊆ Sa, and

δ(q∅,a) = qa.

• If ω ∈ S∅ then ω · b includes at least one “b”, but not an “a”,

so that ω · b ∈ Sb. Thus {ω · b | ω ∈ S∅} ⊆ Sb, and

δ(q∅,b) = qb.

• If ω ∈ S∅ then ω · c does not include an “a” or a “b”, so that

ω · c ∈ S∅. Thus {ω · c | ω ∈ S∅} ⊆ S∅, and

δ(q∅,c) = q∅.

Recap Design — Part Two Verification

The Example, So Far

Here is what we have, so far.

q∅start

qa

qb

qno

c a

b

Recap Design — Part Two Verification

Continuing the Example: Discovering Transactions
Consider transactions out of the state qa, which corresponds to

the set

Sa = {ω ∈ Σ⋆ | ω contains at least one “a” but no b’s}.

• If ω ∈ Sa then ω · a includes at least one “a”, but not a “b”,

so that ω · a ∈ Sa. Thus {ω · a | ω ∈ Sa} ⊆ Sa, and

δ(qa,a) = qa.

• If ω ∈ Sa then ω · b includes both an “a” and a “b”, so that

ω · b ∈ Sno. Thus {ω · b | ω ∈ Sa} ⊆ Sno, and

δ(qa,b) = qno.

• If ω ∈ Sa then ω · c includes at least one “a”, but not a “b”,

so that ω · c ∈ Sa. Thus {ω · c | ω ∈ Sa} ⊆ Sa, and

δ(qa,c) = qa.

Recap Design — Part Two Verification

The Example, So Far

Here is what we have, so far.

q∅start

qa

qb

qno

c a

b

a, c

b

Recap Design — Part Two Verification

Continuing the Example: Discovering Transactions
Consider transactions out of the state qb, which corresponds to

the set

Sb = {ω ∈ Σ⋆ | ω contains at least one “b” but no a’s}.

• If ω ∈ Sb then ω · a includes both an “a” and a “b”, so that

ω · a ∈ Sno. Thus {ω · b | ω ∈ Sa} ⊆ Sno, and

δ(qb,a) = qno.

• If ω ∈ Sb then ω · b includes at least one “b”, but not an “a”,

so that ω · b ∈ Sb. Thus {ω · b | ω ∈ Sb} ⊆ Sb, and

δ(qb,b) = qb.

• If ω ∈ Sb then ω · c includes at least one “b”, but not an “a”,

so that ω · c ∈ Sb. Thus {ω · c | ω ∈ Sb} ⊆ Sb, and

δ(qb,c) = qb.

Recap Design — Part Two Verification

The Example, So Far
Here is what we have, so far.

q∅start

qa

qb

qno

c a

b

a, c

b

b, c

a

Recap Design — Part Two Verification

Continuing the Example: Discovering Transactions

Consider transactions out of the state qno, which corresponds

to the set

Sno = {ω ∈ Σ⋆ | ω includes both an “a” and a “b”}.

• If ω ∈ Sno then ω includes both an “a” and a “b”, so that

ω · a, ω · b, and ω · c each contain both an “a” and a “b” as

well. Thus ω · a, ω · b, ω · c ∈ Sno, implying that

{ω · σ | ω ∈ Sno} ⊆ Sno

for σ = a, for σ = b, and for σ = c, so that

δ(qno,a) = δ(qno,b) = δ(qno,c) = qno.

Recap Design — Part Two Verification

Continuing the Example: Discovering Transitions

Hurray!

The fourth “sanity check” has now been passed as well. A DFA

for the language L — which includes the transitions that have

been identified — is as follows.

Recap Design — Part Two Verification

The Example, Concluded
Here is what we now have.

q∅start

qa

qb

qno

c a

b

a, c

b

b, c

a

a, b, c

Recap Design — Part Two Verification

Suggestions

Suggestions about Figuring out “What to Remember”

• Consider the language to be recognized very carefully.

This may be enough to figure out what to remember, or it

may provide a good start.

• Learn from unsuccessful attempts instead of discarding

them. This helped us to design a DFA for L!

• Study Examples — and Practice! As you consider more

DFA’s for languages you will begin to recognize common

situations and patterns.

Recap Design — Part Two Verification

Verification

We’re not done yet!

• Why should you — or anyone else — believe that this

process is correct, that is, that this process is guaranteed

to provide what is claimed (a DFA for the given language)

whenever you completed the process, without making

mistakes?

• How could you convince someone else that a given DFA

has a given language?

Recap Design — Part Two Verification

A Useful Result

Theorem (Correctness of a DFA)

Let L ⊆ Σ⋆, for an alphabet Σ, and let

M = (Q,Σ, δ,q0,F)

with the same alphabet Σ. Suppose that (after renaming states,

if needed)

Q = {q0,q1, . . . ,qn−1}

where n = |Q| ≥ 1. Suppose, as well, that

S0,S1, . . . ,Sn−1

are subsets of Σ⋆ such that the following properties are

satisfied.

Recap Design — Part Two Verification

A Useful Result

(a) Every string in Σ⋆ belongs to exactly one of

S0,S1, . . . ,Sn−1.

(b) λ ∈ S0.

(c) Si ⊆ L for every integer i such that 0 ≤ i ≤ n − 1 and

qi ∈ F.

(d) Si ∩ L = ∅ for every integer i such that 0 ≤ i ≤ n − 1 and

qi /∈ F.

(e) The following property is satisfied, for every integer i such

that 0 ≤ i ≤ n − 1 and for every symbol σ ∈ Σ:

“Suppose that qj = δ(qi , σ) (so that 0 ≤ j ≤ n − 1).

Then

{ω · σ | ω ∈ Si} ⊆ Sj .”

Then L(M) = L.

Recap Design — Part Two Verification

Using This Result

• A proof of this result is given in a supplement for this

lecture — and this can be used if you — or someone else

— is not convinced that the claim is correct, either.

• You do not need to know how to prove that this result is

correct — but you can use it to prove that a given

deterministic finite automaton has a given language.

• Note: If you used the “design process” that was presented

in these notes, to design a DFA for the language L — and

M is the DFA you obtained — then (if you carried out the

design process completely) you have already discovered

proofs of everything you need. That is: proving

correctness of your DFA only involves re-organizing the

information you have already discovered.

Recap Design — Part Two Verification

Using This Result

• Proving correctness of your DFA, when you did not use a

design process like this one to develop it, might be

considerably more difficult. Indeed, it might not be clear

that your DFA is correct, at all!

• A completion of this example — that is, and application of

the above theorem to prove that the above deterministic

finite automaton has the language L, is included in the

supplement to this lecture.

	Recap
	Design — Part Two
	Verification

