
Design — Overview and Objectives Example Design — Part One Going Forward

Computer Science 351
DFA Design and Verification — Part One

Instructor: Wayne Eberly

Department of Computer Science
University of Calgary

Lecture #3



Design — Overview and Objectives Example Design — Part One Going Forward

Goals for Today

Goals for Today:

• Beginning of a presentation of a process that can be used

to design a deterministic finite automaton that has a given

language.



Design — Overview and Objectives Example Design — Part One Going Forward

A “Longer Term” Goal

A Longer Term Goal:

• This is one of many processes, that can be followed to

complete various tasks, that you will learning about.

• Good News: Because deterministic finite automata are

reasonably simple, this design process is reasonably easy

to understand and use — so that can focus on learning

how to follow a process that is being introduced in a course

in a reasonably simple setting.

This might make things easier — because you have

already figured out how to do things — later on, when

more complicated processes are being introduced.



Design — Overview and Objectives Example Design — Part One Going Forward

A “Longer Term” Goal

• Not-So-Good News: Because this process (and problems

solved, using it) is so simple, it can be tempting to skip

over it!

However, this might result in your falling behind — because

you have so much more to learn — later on, when more

complicated processes are being introduced.



Design — Overview and Objectives Example Design — Part One Going Forward

DFA Design

Good Advice from “Introduction to the Theory of

Computation:”

“Whether it be automata or artwork, design is a cre-

ative process. As such it cannot be reduced to a sim-

ple recipe or formula. However, you might find a partic-

ular approach helpful when designing various types of

automata. That is, put yourself in the place of the ma-

chine you are trying to design and then see how you

would go about performing the machine’s task. Pre-

tending that you are the machine is a psychologi-

cal trick that helps engage your whole mind in the

design process.”



Design — Overview and Objectives Example Design — Part One Going Forward

“Being a DFA”

That is:

Be the Machine!



Design — Overview and Objectives Example Design — Part One Going Forward

What We are Given

When beginning this process, we are given the following

information.

• An alphabet Σ — generally given by listing the symbols

that are included in Σ.

• The language L ⊆ Σ⋆ of the DFA that is to be designed.

See the material for Lecture #1, for a description of how L

might be given to us.



Design — Overview and Objectives Example Design — Part One Going Forward

Where We Want to End Up

At the end of our process, we should have given the following:

• A deterministic finite automaton

L = (Q,Σ, δ,q0,F )

whose alphabet is the alphabet, Σ, that we were given.

• A proof that L = L(M) — or enough information so that it

is clear that this proof could be written.



Design — Overview and Objectives Example Design — Part One Going Forward

Where We Will Start

Remember that a deterministic finite automaton processes

processes a string by considering one symbol in the string

at a time, in the order in which the symbols occur in the string.

• The only information that you (as the automaton) know

about what has seen so far is represented by the current

state.

• A deterministic finite automaton has only finitely many

states, so only a finite amount of information can be

remembered, even though the input string can be

arbitrarily long.



Design — Overview and Objectives Example Design — Part One Going Forward

Starting the Process

To start things off we will — somehow — try to answer the

following question.

What do you need to remember
about the part of the string you
have seen so far?

Note: You do not need to be sure about the answer in order to

start! Answering this question is the step that requires the most

imagination and creativity in this design process.



Design — Overview and Objectives Example Design — Part One Going Forward

Ongoing Example

The process being developed will be used to design a

deterministic finite automata for the following language over the

alphabet Σ = {a,b,c}:

L = {ω ∈ Σ⋆ | either ω does not include an “a”

or ω does not include a “b”}.

Clarification: In the definition of L, “or” does not mean

“exclusive or” — both conditions might be satisfied. Thus L

includes all the strings that only include c’s.



Design — Overview and Objectives Example Design — Part One Going Forward

Application to Example — A First Attempt

Since

L = {ω ∈ Σ⋆ | either ω does not include an “a”

or ω does not include a “b”}.

we probably need to remember whether both an “a” and a “b”

have already been seen — because the string that has been

processed is in L if this is not the case.



Design — Overview and Objectives Example Design — Part One Going Forward

Continuing the Process

To continue, use your answer to the question (about what the

DFA must remember) to define a collection

S0,S1, . . . ,Sn−1

of subsets of Σ⋆, for some positive integer n — such that the

information you are remembering, about a string ω ∈ Σ⋆, is the

same as remembering which, of these subsets, ω belongs to.



Design — Overview and Objectives Example Design — Part One Going Forward

Application to Example — A First Attempt

Since we will try to remember whether both an “a” and a “b”

have already been seen — and the string processed, so far, is

not in L when this is true, we will consider a pair of subsets

of Σ⋆, namely

Syes = {ω ∈ Σ⋆ | either ω does not include an “a”

or ω does not include a “b”}

and

Sno = {ω ∈ Σ⋆ | ω includes both an “a” and a “b”}.

Now n = 2, S0 = Syes = L, and S1 = Sno = {ω ∈ Σ⋆ | ω /∈ L}.



Design — Overview and Objectives Example Design — Part One Going Forward

Continuing the Process: A First “Sanity Check”

Before doing much more you should confirm that the following

properties hold.

1. Only a finite number of subsets of Σ⋆ have been identified

— so that these really can be numbered

S0,S1, . . . ,Sn−1

for some positive integer n.

Explanation: Each of these subsets will eventually correspond

to a different state in the automaton being designed — and a

DFA can only have a finite number of states.



Design — Overview and Objectives Example Design — Part One Going Forward

Application to the Example — A First Attempt

• This is condition is satisfied for this example, since only

two subsets, S0 = Sno and S1 = Syes, have been

identified.

• We will (initially) be trying to design a deterministic finite

automaton with a set of states

Q = {qno,qyes}

where the state qno “corresponds to” the set Sno and where

the state qyes “corresponds to” the set Syes in some way.

• This kind of “correspondence” will be described, more

completely, later on in this process.



Design — Overview and Objectives Example Design — Part One Going Forward

Continuing the Process: A Second “Sanity Check”

2. Every string ω ∈ Σ⋆ belongs to exactly one of the sets

S0,S1, . . . ,Sn−1

that have been identified.

Explanation: When our automaton sees (and processes) the

string ω it should end up in exactly one state.



Design — Overview and Objectives Example Design — Part One Going Forward

Application to the Example — A First Attempt

• This condition is also satisfied for this example, because

Syes = L and Sno = {ω ∈ Σ⋆ | ω /∈ L} — so that it is

sufficient to examine the definitions, of Syes and Sno, in

order to see that every string in Σ⋆ must belong to exactly

one of these subsets.



Design — Overview and Objectives Example Design — Part One Going Forward

Discovering More: Identifying the Start State

If the second “sanity check,” above, was passed, then the

empty string λ belongs to exactly one of the subsets

S0,S1, . . . ,Sn−1.

The start state should now be set to be qi , for the unique

integer i such that 0 ≤ i ≤ n − 1 and λ ∈ Si .

Simplification: If necessary, let us renumber states (and

subsets) as needed, so that λ ∈ S0 and q0 is the start state.



Design — Overview and Objectives Example Design — Part One Going Forward

Application to the Example — A First Attempt

• In our example, λ ∈ Syes — so the start state of our DFA

should be the state, qyes, that corresponds to this subset

of Σ⋆ — as given above.



Design — Overview and Objectives Example Design — Part One Going Forward

How Subsets Correspond To States

The correspondence between subsets of Σ⋆ and states in Q

can now be described more precisely:

Desired Property: For every string ω ∈ Σ⋆ and for every

integer i such that 0 ≤ i ≤ n − 1,

ω ∈ Si

if and only if

δ⋆(q0, ω) = qi

in the automaton M = (Q,Σ, δ,q0,F ) that is being designed.



Design — Overview and Objectives Example Design — Part One Going Forward

Application to the Example — A First Attempt

• Since qyes is the start state, for our example, this

correspondence is as follows: For every string ω ∈ Σ⋆,

ω ∈ Syes if and only if δ⋆(qyes, ω) = qyes

and

ω ∈ Sno if and only if δ⋆(qyes, ω) = qno.



Design — Overview and Objectives Example Design — Part One Going Forward

The Example, So Far

qyesstart qno

Desired Properties:

• δ⋆(qyes, ω) = qyes for every string ω ∈ Syes, that is, for all ω
such that either ω does not include an “a” or ω does not

include a “b” (or both);

• δ⋆(qyes, ω) = qno for every string ω ∈ Sno, that is, for all ω
such that ω includes both an “a” and a “b”.



Design — Overview and Objectives Example Design — Part One Going Forward

Continuing the Process: A Third “Sanity Check”

Consider a subset Si (for 0 ≤ i ≤ n − 1) that has been

identified, and the state, qi ∈ Q, that it corresponds to.

• If qi is an accepting state then it must be true that ω ∈ L for

every string ω ∈ Σ⋆ such that δ⋆(q0, ω) = qi . That is, it must

be true that ω ∈ L whenever ω ∈ Si — so that Si ⊆ L.

• On the other hand, if qi is not an accepting state then it

must be true that ω /∈ L for every string ω ∈ Σ⋆ such that

δ⋆(q0, ω) = qi . That is, it must be true that ω /∈ L whenever

ω ∈ Si — so that Si ∩ L = ∅.



Design — Overview and Objectives Example Design — Part One Going Forward

Continuing the Process: A Third “Sanity Check”

This is the reason for the following third “sanity check”:

3. Either Si ⊆ L or Si ∩ L = ∅ for each integer i such that

0 ≤ i ≤ n − 1.

If this condition is satisfied, because Si ⊆ L, then qi should be

an accepting state. On the other hand, qi should not be an

accepting state if the condition is satisfied with Si ∩ L = ∅.



Design — Overview and Objectives Example Design — Part One Going Forward

Application to the Example — A First Attempt

• Recall that

L = Syes = {ω ∈ Σ⋆ | either ω does not include an “a”

or ω does not include a “b”}

and that Sno = {ω ∈ Σ⋆ | ω includes both an “a” and a “b”}.

Since Syes ⊆ L the corresponding state, qyes, is an

accepting state. Since Sno ∩ L = ∅ the corresponding state,

qno, is not an accepting state.



Design — Overview and Objectives Example Design — Part One Going Forward

The Example, So Far

qyesstart qno

Desired Properties:

• δ⋆(qyes, ω) = qyes for every string ω ∈ Syes, that is, for all ω
such that either ω does not include an “a” or ω does not

include a “b” (or both);

• δ⋆(qyes, ω) = qno for every string ω ∈ Sno, that is, for all ω
such that ω includes both an “a” and a “b”.



Design — Overview and Objectives Example Design — Part One Going Forward

Continuing the Process: A Fourth “Sanity Check”

Consider a subset Si (for 0 ≤ i ≤ n − 1) and a symbol σ ∈ Σ.

• Since transitions should be well-defined, there must also

exist an integer j such that 0 ≤ j ≤ n − 1 and

δ(qi , σ) = qj

— where qi ∈ Q corresponds to Si and qj ∈ Q corresponds

to Sj .

• Thus, if ω ∈ Σ⋆ such that ω ∈ Si , then

δ⋆(q0, ω · σ) = δ(δ⋆(q0, ω), σ) (as shown in Lecture #2)

= δ(qi , σ) (since ω ∈ Si , so δ⋆(q0, ω) = qi )

= qj

— implying that ω · σ ∈ Sj .



Design — Overview and Objectives Example Design — Part One Going Forward

Continuing the Process: A Fourth “Sanity Check”

• Since ω was arbitrarily chosen from Σ⋆ such that ω ∈ Si ,

ω · σ ∈ Sj

for all strings ω ∈ Si (where j = δ(qi , σ)).

• The same property can be written as follows (for the same

integers i and j , and the same symbol σ):

{ω · σ | ω ∈ Si} ⊆ Sj .



Design — Overview and Objectives Example Design — Part One Going Forward

Continuing the Process: A Fourth “Sanity Check”

This is the reason for the fourth “sanity check”:

4. For every integer i such that 0 ≤ j ≤ n − 1 and for every

symbol σ ∈ Σ, there exists an integer j such that

0 ≤ j ≤ n − 1 and such that

{ω · σ | ω ∈ Si} ⊆ Sj .

Then δ(qi , σ) = qj , when qi is the state corresponding to Si

and when qj is the state corresponding to Sj .



Design — Overview and Objectives Example Design — Part One Going Forward

Application to the Example: A First Attempt

Let us begin by considering the state qno, which corresponds to

the set

Sno = {ω ∈ Σ⋆ | ω includes both an “a” and a “b”}.

• If ω ∈ Sno, so that ω includes both an “a” and a “b”, then so

do ω · a, ω · b, and ω · c. Thus

{ω · σ | ω ∈ Sno} ⊆ Sno

for σ = a, for σ = b, and for σ = c, so that

δ(qno,a) = δ(qno,b) = δ(qno,c) = qno.



Design — Overview and Objectives Example Design — Part One Going Forward

The Example, So Far

Adding the transitions that have been discovered, we now have

the following.

qyesstart qno

a, b, c



Design — Overview and Objectives Example Design — Part One Going Forward

Application to the Example — A First Attempt

We must also discover transitions out of the state qyes, which

corresponds to the set

Syes = {ω ∈ Σ⋆ | either ω does not include an “a”

or ω does not include an “b”}



Design — Overview and Objectives Example Design — Part One Going Forward

Application to the Example — A First Attempt

• First, Some Good News: Suppose that ω ∈ Syes, so that

either ω does not include an “a” or ω does not include

an “b”. Consider the string ω · c.

• If ω does not include an “a” then ω · c does not include
an “a” either, so that ω · c ∈ Syes.

• If ω does not include a “b” then ω · c does not include a “b”
either, so that ω · c ∈ Syes, once again.

Since ω · c ∈ Syes in every possible case, it follows that

{ω · c | ω ∈ Syes} ⊆ Syes,

so that

δ(qyes,c) = qyes.



Design — Overview and Objectives Example Design — Part One Going Forward

The Example, So Far

Adding the transition that has been discovered, we now have

the following.

qyesstart qno

c a, b, c



Design — Overview and Objectives Example Design — Part One Going Forward

Application to the Example — A First Attempt

There are two more transitions to be discovered out of the

state qyes, which corresponds to the set Syes.

• Suppose that ω ∈ Syes, so that either ω does not include

an “a” or ω does not include an “b”. Consider the string

ω · a.

If ω does not include an “b” then ω · a does not include

an “b”, either — so that ω · a ∈ Syes.

Unfortunately, if ω does not include an “a” then ω · a does
include one!

• If ω did not include a “b” either, then ω · a ∈ Syes, because

ω · a (still) does not include a “b”.

• However, if ω does include a “b” then ω · a includes both

an “a” and a “b” — so that ω · a ∈ Sno, instead.



Design — Overview and Objectives Example Design — Part One Going Forward

Application to the Example — A First Attempt

Something similar happens when one considers a string ω · b,

for ω ∈ Syes:

• If ω does not include an “a” then ω · b ∈ Syes.

• On the other hand, if ω does not include a “b” then
• ω · b ∈ Syes if ω does not include an “a”, either, but

• ω · b ∈ Sno, instead, if ω does include an “a”.

Question: What has happened here, and what does it mean?



Design — Overview and Objectives Example Design — Part One Going Forward

Application to the Example – A First Attempt

Answer:

The fourth “sanity check”

has failed.



Design — Overview and Objectives Example Design — Part One Going Forward

Application to the Example

• In particular, we have confirmed that it is not possible to

identify well-defined transitions out of the state qyes for the

symbols “a” or “b”.

• Conclusion (For Now): The automaton must remember

different information — or, possibly, additional

information — in order to recognize the language L.



Design — Overview and Objectives Example Design — Part One Going Forward

To Be Continued. . .

• We will see, next time, that all that time and effort was

worthwhile and that there is a way to make use of what

we have done, so far, to solve this problem.


	Design — Overview and Objectives
	Example
	Design — Part One
	Going Forward

