Lecture #2: Introduction to Deterministic Finite Automata Lecture Presentation

Consideration of a Deterministic Finite Automaton

Consider a deterministic finite automaton M that has alphabet $\Sigma = \{a, b\}$ and that can be represented as follows.

How would you describe this deterministic finite automaton as a tuple $M = (Q, \Sigma, \delta, q_0, F)$?

- Q:
- Σ:
- δ:

• q₀:

• *F*:

What can be said about what happens when M is executed on each of the following strings $\omega\in \Sigma^\star ?$

- $\omega = \lambda$:
- $\omega = a$:
- $\omega = b$:
- $\omega = aba:$
- $\omega = ababab$:
- $\omega = aaabba:$

What are the states q_0 , q_1 and q_2 being used to keep track of as the symbols in an input strong $\omega \in \Sigma^*$ are being processed?

Making This More Formal: Recall that (in this course) $n \in \mathbb{N}$ if and only if n is an integer such that $n \ge 0$.

Theorem 1. Let $n \in \mathbb{N}$.

Then, for every string $\omega \in \Sigma^{\star}$ such that $|\omega| = n$, the following properties are satisfied.

- (a) $\delta^{\star}(q_0,\omega) = q_0$ if and only if
- (b) $\delta^{\star}(q_0,\omega) = q_1$ if and only if

(c) $\delta^{\star}(q_0,\omega) = q_2$ if and only if

Application: How could you *use* this result to prove that M has a given language?

How Could You Prove This Theorem?