Lecture #2: Introduction to Deterministic Finite Automata Extended Transition Functions: Equivalence of Definitions

1 Introduction

During the first lecture on deterministic finite automata, *two* definitions were given for an extended transition function

$$\delta^\star: Q \times \Sigma^\star \to Q$$

for a deterministic finite automaton

$$M = (Q, \Sigma, \delta, q_0, F).$$

This document includes a *proof* that these definitions really are equivalent. CPSC 351 students are asked to read this because

- · the equivalence of these definitions is quite important, and
- this document includes proofs of several properties, concerning strings, using *mathematical induction*. Students in this course will be expected to read and understand proofs like this throughout the course and may also be asked to *write* proofs like these on assignments.

2 Extended Transition Function — First Definition and Some Properties

As defined in the lecture notes, the extended transition function is a total function

$$\delta^\star: Q \times \Sigma^\star \to Q$$

such that if the automaton M is in state $q \in Q$, and the (sequence of symbols in) the string $\omega \in \Sigma^*$ is received, then M is in state $\delta^*(q, \omega)$ after that.

Thus

$$\delta^{\star}(q,\lambda) = q \tag{1}$$

for every state $q \in Q$.

Suppose, more generally, that

$$\omega = \sigma_1 \sigma_2 \dots \sigma_n \in \Sigma^\star$$

is a string with length $n \ge 0$ in Σ^* — so that, for $1 \le i \le n$, the *i*th symbol in ω is σ_i .

Let $q \in Q$. Then a *sequence* of states r_0, r_1, \ldots, r_n , with length n + 1, can be defined as follows:

• $r_{i+1} = \delta(r_i, \sigma_{i+1})$ for every integer *i* such that $0 \le i < n$.

In this case,

$$\delta^{\star}(q,\omega) = r_n,\tag{2}$$

the last state in the above sequence.

Note that the definitions given at lines (1) and (2) agree if $\omega = \lambda$ — for n = 0 in this case, so that $r_n = r_0 = q$.

The following *lemma* presents a property of sequences of states like the above that will be useful when properties of the extended transition function are considered.

Lemma 2.1. Let $q \in Q$, let

$$\mu = \sigma_1 \sigma_2 \dots \sigma_m \in \Sigma^\star \tag{3}$$

and

$$\nu = \tau_1 \tau_2 \dots \tau_n \in \Sigma^\star \tag{4}$$

be strings with lengths m and n respectively, and let

$$\omega = \mu \cdot \nu = \sigma_1 \sigma_2 \dots \sigma_m \tau_1 \tau_2 \dots \tau_n \in \Sigma^*$$
(5)

be the concatenation of μ and ν , so that ω has length n + m.

Consider the sequences r_0, r_1, \ldots, r_m and $s_0, s_1, \ldots, s_{m+n}$ of states, with lengths m + 1 and m + n + 1, respectively, that are defined using the following rules.

- (a) $r_0 = q$.
- (b) $r_{i+1} = \delta(r_i, \sigma_{i+1})$ for every integer *i* such that $0 \le i \le m 1$.
- (c) $s_0 = q$.
- (d) $s_{i+1} = \delta(s_i, \sigma_{i+1})$ for every integer *i* such that $0 \le i \le m 1$.

(e) $s_{m+j+1} = \delta(s_{m+j}, \tau_{j+1})$ for every integer j such that $0 \le j \le n-1$.

Then $r_i = s_i$ for every integer *i* such that $0 \le i \le m$.

Proof. It will be shown that $r_i = s_i$, for every integer *i* such that $0 \le i \le m$, by induction on *i*. The standard form of mathematical induction will be used.

Basis: if i = 0 then

 $r_i = r_0$ = q (by the equation in part (a) of the claim, above) = s_0 (by the equation in part (c) of the claim, above) = s_i

as required to establish the claim in this case.

Inductive Step: Let k be an integer such that $k \ge 0$. It is necessary and sufficient to use the following

Inductive Hypothesis: If $k \leq m$ then $r_k = s_k$.

to prove the following

Inductive Claim: If
$$k+1 \leq m$$
 then $r_{k+1} = s_{k+1}$.

There is nothing to prove if k + 1 > m. Suppose, therefore, that $k + 1 \le m$. Since $k \ge 0$ it follows that $0 \le k \le m - 1 \le m$, and it follows by the inductive hypothesis that $r_k = s_k$. Thus

$r_{k+1} = \delta(r_k, \sigma_{k+1})$	(by part (b) of the above claim, since $0 \le k \le m-1$)
$=\delta(s_k,\sigma_{k+1})$	(by the inductive hypothesis, as noted above)
$= s_{k+1}$	(by part (d) of the above claim, since $0 \le k \le m-1$)

as needed to complete the inductive step and to prove the claim.

Note: The above claim is (arguably) so obvious that it probably does not need a proof. A proof has been given, anyway, to give an example of a proof of a property of a string using mathematical induction.

Lemma 2.2. Let $q \in Q$, let μ be a string in Σ^* and let τ be a symbol in Σ . Then

$$\delta^{\star}(q, \mu \cdot \tau) = \delta(\delta^{\star}(q, \mu), \tau).$$

Proof. This is a straightforward consequence of Lemma 2.1, for μ as in the claim (so that $m = |\mu|$), and when setting ν to be the string with length one whose first (and only) symbol is τ (so that $\tau_1 = \tau$ and n = 1). Then it follows by the definition of the extended transition function, given above, that $\delta^*(q, \mu) = r_m$ — and, since

$$\mu \cdot \tau = \sigma_1 \sigma_2 \dots \sigma_m \tau,$$

it also follows by the definition of the extended transition function that $\delta^{\star}(q, \mu \cdot \tau) = s_{m+n} = s_{m+1}$. Thus

$$\begin{split} \delta^{\star}(q, \mu \cdot \tau) &= s_{m+1} & (\text{as noted above}) \\ &= \delta(s_m, \tau) & (\text{by part (e) of the definition in Lemma 2.1, with } j = 0) \\ &= \delta(r_m, \tau) & (\text{since } s_m = r_m, \text{ by Lemma 2.1}) \\ &= \delta(\delta^{\star}(q, \mu), \tau), & (\text{since } \delta^{\star}(q, \mu) = r_m, \text{ as noted above}) \end{split}$$

as claimed.

3 Extended Transition Function — Second Definition

Now consider the (possibly different) function

$$\delta^{\times}: Q \times \Sigma^{\star} \to Q$$

that corresponds to the *second* definition, That is, for every state $q \in Q$ and for every string $\omega \in \Sigma^*$, let

$$\delta^{\times}(q,\omega) = \begin{cases} q & \text{if } \omega = \lambda, \\ \delta(\delta^{\times}(q,\mu),\tau) & \text{if } \omega = \mu \cdot \tau \text{ for } \mu \in \Sigma^{\star} \text{ and } \tau \in \Sigma. \end{cases}$$
(6)

4 Equivalence of Definitions

Theorem 4.1. Let $\delta^* : Q \times \Sigma^* \to Q$ and $\delta^{\times} : Q \times \Sigma^* \to Q$ be the functions defined in Sections 2 and 3, respectively. Then $\delta^* = \delta^{\times}$, that is, $\delta^*(q, \omega) = \delta^{\times}(q, \omega)$ for every state $q \in Q$ and for every string $\omega \in \Sigma^*$.

Proof. The result will be proved by induction on the length of the string ω mentioned in the claim. The standard form of mathematical induction will be used.

Basis: If $|\omega| = 0$ then $\omega = \lambda$, the empty string. It is therefore necessary and sufficient to prove that $\delta^*(q, \lambda) = \delta^{\times}(q, \lambda)$ for every state $q \in Q$.

Suppose, therefore, that $q \in Q$. Then

$$\delta^{\star}(q,\lambda) = q$$
 (by the equation at line (1))
= $\delta^{\times}(q,\lambda)$, (by the equation at line (6))

as required.

Inductive Step: Let k be an integer such that $k \ge 0$. It is necessary and sufficient to use the following

Inductive Hypothesis: $\delta^*(q,\omega) = \delta^{\times}(q,\omega)$ for every state $q \in Q$ and for every string $\omega \in \Sigma^*$ whose length is k.

to prove the following

Inductive Claim: $\delta^*(q,\omega) = \delta^{\times}(q,\omega)$ for every state $q \in Q$ and for every string $\omega \in \Sigma^*$ whose length is k + 1.

With that noted, let q be a state in Q and let ω be a string in Σ^* with length k + 1. Then, since $k + 1 \ge 1$, there exists a string $\mu \in \Sigma^*$ and a symbol $\tau \in \Sigma$ such that $\omega = \mu \cdot \tau$. Now $k+1 = |\omega| = |\mu|+1$, so that the length of μ is k, and it follows by the inductive hypothesis that

$$\delta^{\star}(q,\mu) = \delta^{\times}(q,\mu).$$

Thus

$$\begin{split} \delta^{\star}(q,\omega) &= \delta^{\star}(q,\mu\cdot\tau) & (\text{since } \omega = \mu\cdot\tau) \\ &= \delta(\delta^{\star}(q,\mu),\tau) & (\text{by Lemma 2.2}) \\ &= \delta(\delta^{\times}(q,\mu),\tau) & (\text{by the inductive hypothesis, as noted above}) \\ &= \delta^{\times}(q,\mu\cdot\tau) & (\text{by the equation at line (6)}) \\ &= \delta^{\times}(q,\omega) & (\text{since } \omega = \mu\cdot\tau). \end{split}$$

Since q and ω were arbitrarily chosen it follows that $\delta^*(q,\omega) = \delta^{\times}(q,\omega)$ for *every* state $q \in Q$ and for *every* string $\omega \in \Sigma^*$ whose length is k + 1 — as required to complete the inductive step, and the proof of the claim.

Thus the two definitions of an "extended transition function," given in the lecture notes, really are (provably) equivalent.