
Lecture #2: Introduction to Deterministic Finite Automata

Extended Transition Functions: Equivalence of Definitions

1 Introduction

During the first lecture on deterministic finite automata, two definitions were given for an ex-

tended transition function

δ⋆ : Q× Σ⋆ → Q

for a deterministic finite automaton

M = (Q,Σ, δ, q0, F ).

This document includes a proof that these definitions really are equivalent. CPSC 351 stu-

dents are asked to read this because

• the equivalence of these definitions is quite important, and

• this document includes proofs of several properties, concerning strings, using mathe-

matical induction. Students in this course will be expected to read and understand

proofs like this throughout the course — and may also be asked to write proofs like

these on assignments.

2 Extended Transition Function — First Definition and Some Prop-

erties

As defined in the lecture notes, the extended transition function is a total function

δ⋆ : Q× Σ⋆ → Q

such that if the automaton M is in state q ∈ Q, and the (sequence of symbols in) the string ω ∈
Σ⋆ is received, then M is in state δ⋆(q, ω) after that.
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Thus

δ⋆(q, λ) = q (1)

for every state q ∈ Q.

Suppose, more generally, that

ω = σ1σ2 . . . σn ∈ Σ⋆

is a string with length n ≥ 0 in Σ⋆ — so that, for 1 ≤ i ≤ n, the ith symbol in ω is σi.

Let q ∈ Q. Then a sequence of states r0, r1, . . . , rn, with length n + 1, can be defined as

follows:

• r0 = q, and

• ri+1 = δ(ri, σi+1) for every integer i such that 0 ≤ i < n.

In this case,

δ⋆(q, ω) = rn, (2)

the last state in the above sequence.

Note that the definitions given at lines (1) and (2) agree if ω = λ — for n = 0 in this case, so

that rn = r0 = q.

The following lemma presents a property of sequences of states like the above that will be

useful when properties of the extended transition function are considered.

Lemma 2.1. Let q ∈ Q, let

µ = σ1σ2 . . . σm ∈ Σ⋆ (3)

and

ν = τ1τ2 . . . τn ∈ Σ⋆ (4)

be strings with lengths m and n respectively, and let

ω = µ · ν = σ1σ2 . . . σmτ1τ2 . . . τn ∈ Σ⋆ (5)

be the concatenation of µ and ν, so that ω has length n+m.

Consider the sequences r0, r1, . . . , rm and s0, s1, . . . , sm+n of states, with lengths m + 1
and m+ n+ 1, respectively, that are defined using the following rules.

(a) r0 = q.

(b) ri+1 = δ(ri, σi+1) for every integer i such that 0 ≤ i ≤ m− 1.

(c) s0 = q.

(d) si+1 = δ(si, σi+1) for every integer i such that 0 ≤ i ≤ m− 1.
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(e) sm+j+1 = δ(sm+j , τj+1) for every integer j such that 0 ≤ j ≤ n− 1.

Then ri = si for every integer i such that 0 ≤ i ≤ m.

Proof. It will be shown that ri = si, for every integer i such that 0 ≤ i ≤ m, by induction on i.

The standard form of mathematical induction will be used.

Basis: if i = 0 then

ri = r0

= q (by the equation in part (a) of the claim, above)

= s0 (by the equation in part (c) of the claim, above)

= si

as required to establish the claim in this case.

Inductive Step: Let k be an integer such that k ≥ 0. It is necessary and sufficient to use the

following

Inductive Hypothesis: If k ≤ m then rk = sk.

to prove the following

Inductive Claim: If k + 1 ≤ m then rk+1 = sk+1.

There is nothing to prove if k + 1 > m. Suppose, therefore, that k + 1 ≤ m. Since k ≥ 0 it

follows that 0 ≤ k ≤ m− 1 ≤ m, and it follows by the inductive hypothesis that rk = sk. Thus

rk+1 = δ(rk, σk+1) (by part (b) of the above claim, since 0 ≤ k ≤ m− 1)

= δ(sk, σk+1) (by the inductive hypothesis, as noted above)

= sk+1 (by part (d) of the above claim, since 0 ≤ k ≤ m− 1)

as needed to complete the inductive step and to prove the claim.

Note: The above claim is (arguably) so obvious that it probably does not need a proof. A

proof has been given, anyway, to give an example of a proof of a property of a string using

mathematical induction.

Lemma 2.2. Let q ∈ Q, let µ be a string in Σ⋆ and let τ be a symbol in Σ. Then

δ⋆(q, µ · τ) = δ(δ⋆(q, µ), τ).
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Proof. This is a straightforward consequence of Lemma 2.1, for µ as in the claim (so that

m = |µ|), and when setting ν to be the string with length one whose first (and only) symbol is τ

(so that τ1 = τ and n = 1). Then it follows by the definition of the extended transition function,

given above, that δ⋆(q, µ) = rm — and, since

µ · τ = σ1σ2 . . . σmτ,

it also follows by the definition of the extended transition function that δ⋆(q, µ · τ) = sm+n =
sm+1. Thus

δ⋆(q, µ · τ) = sm+1 (as noted above)

= δ(sm, τ) (by part (e) of the definition in Lemma 2.1, with j = 0)

= δ(rm, τ) (since sm = rm, by Lemma 2.1)

= δ(δ⋆(q, µ), τ), (since δ⋆(q, µ) = rm, as noted above)

as claimed.

3 Extended Transition Function — Second Definition

Now consider the (possibly different) function

δ× : Q× Σ⋆ → Q

that corresponds to the second definition, That is, for every state q ∈ Q and for every string

ω ∈ Σ⋆, let

δ×(q, ω) =

{

q if ω = λ,

δ(δ×(q, µ), τ) if ω = µ · τ for µ ∈ Σ⋆ and τ ∈ Σ.
(6)

4 Equivalence of Definitions

Theorem 4.1. Let δ⋆ : Q × Σ⋆ → Q and δ× : Q × Σ⋆ → Q be the functions defined in

Sections 2 and 3, respectively. Then δ⋆ = δ×, that is, δ⋆(q, ω) = δ×(q, ω) for every state q ∈ Q

and for every string ω ∈ Σ⋆.

Proof. The result will be proved by induction on the length of the string ω mentioned in the

claim. The standard form of mathematical induction will be used.

Basis: If |ω| = 0 then ω = λ, the empty string. It is therefore necessary and sufficient to prove

that δ⋆(q, λ) = δ×(q, λ) for every state q ∈ Q.
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Suppose, therefore, that q ∈ Q. Then

δ⋆(q, λ) = q (by the equation at line (1))

= δ×(q, λ), (by the equation at line (6))

as required.

Inductive Step: Let k be an integer such that k ≥ 0. It is necessary and sufficient to use the

following

Inductive Hypothesis: δ⋆(q, ω) = δ×(q, ω) for every state q ∈ Q and for every

string ω ∈ Σ⋆ whose length is k.

to prove the following

Inductive Claim: δ⋆(q, ω) = δ×(q, ω) for every state q ∈ Q and for every string

ω ∈ Σ⋆ whose length is k + 1.

With that noted, let q be a state in Q and let ω be a string in Σ⋆ with length k + 1. Then,

since k + 1 ≥ 1, there exists a string µ ∈ Σ⋆ and a symbol τ ∈ Σ such that ω = µ · τ . Now

k+1 = |ω| = |µ|+1, so that the length of µ is k, and it follows by the inductive hypothesis that

δ⋆(q, µ) = δ×(q, µ).

Thus

δ⋆(q, ω) = δ⋆(q, µ · τ) (since ω = µ · τ )

= δ(δ⋆(q, µ), τ) (by Lemma 2.2)

= δ(δ×(q, µ), τ) (by the inductive hypothesis, as noted above)

= δ×(q, µ · τ) (by the equation at line (6))

= δ×(q, ω) (since ω = µ · τ ).

Since q and ω were arbitrarily chosen it follows that δ⋆(q, ω) = δ×(q, ω) for every state q ∈ Q

and for every string ω ∈ Σ⋆ whose length is k + 1 — as required to complete the inductive

step, and the proof of the claim.

Thus the two definitions of an “extended transition function,” given in the lecture notes, really

are (provably) equivalent.
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