
Supplemental Document for Reading #5

Analyzing Running Time as a Function of Input Size

How do you measure running time as a function of the size of the input? This has, arguably,

been done informally throughout these notes; this is discussed a bit more formally and exten-

sively in this document.

Two Example Algorithms

Consider the following problem.

Searching in an Array

Precondition: An integer array A and an integer key are given as input.

Postcondition: If A[i] = key for an integer i such that 0 ≤ i < A.length then the small-

est such integer is returned as output. An ElementNotFoundException
is thrown otherwise.

The following algorithm can be used to solve this problem.

integer search(integer[] A, integer key) {

1. integer i := 0

2. while ((i < A.length) and (A[i] 6= key)) {

3. i := i + 1

}

4. if (i < A.length) {

5. return i

} else {

6. throw an ElementNotFoundException

}

}

1



Before considering its running time, let us prove the correctness of this algorithm.

• If the precondition for the “Searching in an Array” problem is satisfied then the following

assertion is satisfied immediately before the step at line 1:

Assertion:

1. A is an input integer array.

2. key is an integer input.

• The following loop invariant for the while loop in this algorithm can be established:

Loop Invariant:

1. A is an input integer array.

2. key is an integer input.

3. i is an integer variable such that 0 ≤ i ≤ A.length.

4. A[j] 6= key for every integer j such that 0 ≤ j < i.

• Assertions before the loop, at the beginning of the loop body, at the end of the loop body,

and immediately after the loop, are as follows.

Assertion Before the Loop:

1. The loop invariant is satisfied.

2. i = 0.

Assertion at the Beginning of the Loop Body:

1. The loop invariant is satisfied.

2. 0 ≤ i < A.length.

3. A[i] 6= key.

Assertion at the End of the Loop Body: The loop invariant is satisfied.

Assertion Immediately After the Loop:

1. The loop invariant is satisfied.

2. Either i = A.length, or 0 ≤ i < A.length and A[i] = key.

Exercise: Use the techniques (or modify example proofs) from Reading #3 to establish

that all of these assertions are correct.

• Since the last of these assertions holds immediately before the test at line 4, an exam-

ination of the if-then-else test at lines 4–6 confirms that — if this test is reached at

all,

2



– If key is an entry of the array A, then the smallest integer i such that 0 ≤ i <

A.length and A[i] = key is returned, as output, at line 5; and

– if key is not an entry of the array A, then an ElementNotFoundException is

thrown at line 6.

Consequently, the postcondition for the “Searching in an Array” problem is satisfied if the

execution of the algorithm ends — if the execution ends at all. It is also easily checked

that this algorithm has no undocumented side-effects.

In other words, this algorithm is partially correct.

• In order to show that an execution of the algorithm (beginning with the precondition for

the “Searching in an Array” problem satisfied) does end, one can show that the function

f(A,i) = A.length − i

is a bound function for the while loop in this algorithm.

Exercise: Use the above, along with techniques introduced in Reading #4, to to prove that

if the algorithm is executed when the precondition for the “Searching in an Array” problem is

satisfied, then this execution of the algorithm is guaranteed to terminate.

Note: It now follows that this algorithm correctly solves the “Searching in an Array” problem.

Let’s assume that the integers that are stored in the array (and used as the key) are reasonably

small — so that the uniform cost criterion can (reasonably) used to define the running time of

the algorithm, and the size of its input.

• We will define the size of the array A to be its length, A.length.

• Since the size of the integer key is 1 it would be quite reasonable to define the input

size for this problem (and algorithm) to be A.length + 1.

• However, it is common practice to state the cost of a “search” algorithm as a function of

the length of the array it searches in. Thus (to be consistent with that) we will overlook

the size of the key and define the size of the input for this problem to be A.length.

Now consider the following recursive algorithm. This accesses (but does not modify) an integer

array A and an integer key as global data. It receives a pair of integers, first and last, such

that 0 ≤ first ≤ A.length and −1 ≤ last ≤ A.length − 1 as inputs.

3



integer recSearch(integer first, last){

1. if (first > last) {

2. throw an ElementNotFoundException

3. } else if (A[first] == key) {

4. return first

} else {

5. return recSearch(first+1, last)

}

}

Exercises

1. Prove that the value last−first+1 is a bound function for this recursive algorithm.

2. Prove the following claim. (The case first > last can be dealt with by inspecting the

code and discussing what happens. The case first ≤ last can be dealt with using

induction on last− first.)

Claim: Suppose that algorithm recSearch accesses an integer array A and an integer

key as global data.

If this algorithm is executed on integer inputs first and last such that 0 ≤ first ≤

A.length and such that −1 ≤ last ≤ A.length−1, then the following properties are

satisfied:

(a) If first > last then the execution of the algorithm eventually halts, and an

ElementNotFoundException is thrown when it does.

(b) If first ≤ last, so that 0 ≤ first ≤ last ≤ A.length − 1, and there exists

an integer i such that first ≤ i ≤ last and A[i] = key, then the execution

of the algorithm eventually halts, and the smallest integer i satisfying the above

conditions is returned as output.

(c) If first ≤ last, so that 0 ≤ first ≤ last ≤ A.length − 1, and A[i] 6= key
for every integer i such that first ≤ i ≤ last, then the algorithm eventually

halts, and an ElementNotFoundException is thrown when it does.

This algorithm has no undocumented side-effects. It now follows that the “Searching in an

Array” Problem is also correctly solved by the algorithm that follows.

integer search2 (integer[] A, integer key) {

1. return recSearch(0, A.length−1)

}

4



As for the previous search algorithm, we will define the size of the input to be the length

A.length of the input array.

Question: How can we define the running time of these algorithms as functions of the size of

their input? The running times also depend on whether the key is found in the array, and on

where it is found, if it is.

Worst-Case Running Time

Definition: The worst-case running time of an algorithm on a nonnegative integer input

size n is the maximum of all of the running times for executions of this algorithm on “valid”

inputs (that is, inputs satisfying the precondition for the problem to be solved) with size n.

• Note that this is a function of the input size n. It is undefined, at n, if there are no valid

inputs with size n at all.

• This will be the measure of running time, as a function of input size, that is considered

most often in this course, and in other courses that you will take after this.

• Generalization: If an algorithm accesses and modifies global data then running time can

be defined as a function of the size of the input and the global data that is accessed.

(We will not need to do this today.)

Finding and Proving Upper Bounds for Worst-Case Running Time

First Objective: Finding a function fH(n) such that (whenever it is defined) the worst-case

running time TA(n) of a given algorithm A for input size n is less than or equal to fH(n).

• If the above condition is satisfied then the function fH is an upper bound for the worst-

case running time of the algorithm A.

Note: In general, we will not be trying to prove that the worst-case running time is actually

equal to fH — but sometimes we will be able to do that too.

Recall that the function f(A,i) = A.length − i is a bound function for the while loop in

the search algorithm.

• Note that, since the input size for this algorithm is A.length, this is actually of a function

of the input size and of the value of a local variable (namely, i).

5



• Since the initial value of the variable i is 0, the initial value of this function is A.length.

• As discussed in Reading #4, it follows that there are at most A.length executions of

the body of the while loop, included in the execution of the loop, when this algorithm is

executed (with an array A included as part of the input).

• Suppose that the loop body is executed exactly h times — so that the loop test is exe-

cuted exactly h+ 1 times. Then

– For every integer j such that 1 ≤ j ≤ h+1, the cost Ttest(j) of the jth of the while
loop’s test is 1.

– Since the loop body consists of a single statement, the cost Tbody(j) of the jth

execution of the loop body is 1, as well, for every integer j such that 1 ≤ j ≤ h.

– Adding everything up, we see that the number of steps included in the execution of

the loop (in this case) is

h+1∑

j=1

Ttest(j) +

h∑

j=1

Tbody (j) =

h+1∑

j=1

1 +

h∑

j=1

1 = 2h+ 1.

As noted above, h ≤ A.length, so the number of steps used during an execution of the

while loop is at most 2× A.length + 1.

• Exactly one step (at line 1) is executed before the loop, during an execution of this algo-

rithm — and exactly two steps (either at lines 4 and 5, or at lines 4 and 6) are executed

after it. Thus the number of steps included in an execution of the algorithm is at most

2× A.length + 4.

Now recall that the input size was defined to be A.length...

Conclusion: The worst-case running time Tsearch(n), of the search algorithm, for a nonneg-

ative input size n, is less than or equal to 2n+ 4.

Method Used Here: Same as for Reading #4. If the bound function for a while loop that you

establish depends on the input size instead of the input value then this will often be sufficient

to prove an upper bound for worst-case running time.

Next recall that search2 calls the resSearch algorithm.

• Notice that if it is called with integer inputs first and last, then recSearch is search-

ing for the integer key in a part of the array A that includes k = max(last−first+1, 0)
entries.

6



• With that noted, for an integer k ≥ 0, let us define TrecSearch(k) to be the maximum

number of steps carried out by the algorithm recSearch when it is executed using an

integer array A and an integer key as global data and is called with integer inputs first
and last such that

– 0 ≤ first ≤ A.length,

– −1 ≤ last ≤ A.length − 1, and

– max(last − first+ 1, 0) = k.

This will be what we need to find an upper bound for the worst-case running time

of search2.

• Case: k = 0.

– In this case it follows by the definition of k that first ≥ last + 1, so the test at

line 1 of the algorithm is passed, and that exactly two steps — at lines 1 and 2 —

are included in this execution of the algorithm. Thus

TrecSearch(0) = 2.

• Case: k ≥ 1.

– In this case first ≤ last — so that 0 ≤ first ≤ last ≤ A.index − 1 — and

the test at line 1 fails.

– The execution of the algorithm continues with the test at line 3. Of course, this test

either passes or fails. These “subcases” are considered separately, below.

∗ Subcase: The test at line 3 passes. In this case the execution of the algorithm

ends with one more step — at line 4. In total, 3 steps have been executed.

∗ Subcase: The test at line 3 fails. In this case the execution of the algorithm

continues with the step at line 5 — which initiates a recursive application of the

algorithm with inputs first + 1 and last. The number of steps used by this

recursive application is — by definition — at most TrecSearch(k − 1) so that, in

total, this execution of the algorithm has included at most 3+TrecSearch(k−1)
steps.

– Conclusion: Since the maximum possible running time is at most the maximum of

the bounds obtained for the above subcases,

TrecSearch(k) ≤ max(3, 3 + TrecSearch(k − 1)).

• The following recurrence giving an upper bound for TrecSearch(k) has now been ob-

tained:

TrecSearch(k) ≤

{
2 if k = 0,

max(3, 3 + TrecSearch(k − 1)) if k ≥ 1.

7



• Exercise: Use the above recurrence to prove (by induction on k) that

TrecSearch(k) ≤ 3k + 2

for every integer k ≥ 0.

Now consider the search2 algorithm.

• Note that — when given an integer array A and an integer key are given as inputs — the

algorithm search2 executes a single step, in which it calls the algorithm recSearch
with inputs 0 and A.length − 1... corresponding to the value k = A.length.

• Thus, when executed with an array A as input, search2 uses one more step than

recSearch does when the latter algorithm is called with inputs such that k = A.length.

• Recall that the input size for search2 has been defined to be A.length.

Conclusion: The worst-case running time Tsearch2(n), of the search2 algorithm, for a non-

negative input size n, is less than or equal to 3n+ 3.

Method Used Here: Same as for Reading #5. If you can find a recurrence giving an upper

bound for the running time for a recursive algorithm, as a function of the input size instead of

the input value, then solving this recurrence gives an upper bound for the worst-case running

time of the algorithm.

Do Not Do This Instead!

Sometime, on an an assignment or test, students will write something like the following. This

is given, below, as a solution for the problem, “Find an upper bound for the worst-case running

time of the search algorithm.”

The worst-case input includes an array A and key such that the key is not in the

array.

The number of steps executed in this case is 2n+ 4 if A has length n.

Therefore the worst-case running time Tn(n) is (less than or equal to) 2n+ 4.

Question: What comment might a marker provide... and what mark will probably be awarded?

8



Answer: The comment written might be

This is not a Proof.
and the mark awarded will — very possibly — be 0.

Of course, you might be wondering why that is the case. After all, the number of steps executed

really is 2n+ 4 if the key is not in the input array A and this array has length n.

Hint: If the marker wanted to give better feedback then she or he might circle or underline the

phrase, “The worst-case input is” at the beginning of the student’s answer, and then write the

comment

How can you Prove This?
Here’s the Problem:

• In general, identifying one particular input, with a given size, whose running time really

is probably greater than or equal to those of all the other inputs with a given size, can

be very hard to do — and the student’s answer does not include the kind of proof that

is needed.

• Instead, the student has effectively “dumbed-down” the problem — replacing it with a

different problem that is much easier to solve.

• In particular: Instead of proving that the running times for all inputs with a given size are

less than or equal to a given value (proving a universal claim), the student has pulled

one input out of a hat and analyzed its running time — which would only be allowed if

you were trying to prove an existential claim, instead.

Finding and Proving Lower Bounds for Worst-Case Running Time

Suppose, again, that TA(n) is the worst case running time of an algorithm A when executed on

an input with size n (for n ≥ 1).

Definition: A value B is a lower bound for TA(n) if TA(n) ≥ B, and a function g(n) is a lower

bound for TA if TA(n) ≥ g(n) for every nonnegative integer n for which TA(n) is defined.

Proving a Lower Bound: In order to show that TA(n) ≥ B, for a given value B, we must show

that there exists an input I (that satisfies the precondition of the problem that algorithm A
solves) with size n such that the running time of A on input I is greater than or equal to B.

9



Thus, we must prove an existentially quantified statement when establishing a lower bound

for the worst-case running time of an algorithm.

With that noted, let us consider the search algorithm introduced at the beginning of these

notes.

• Complication: When finding a lower bound for the worst-case running time of an algo-

rithm with a while loop, you generally need to find a lower bound for the number of the

executions of the body of the loop, when the algorithm is executed on some (carefully

chosen) input.

• This is not something that a bound function for the while loop can be used to provide

(although that might suggest something).

• It will probably be necessary to state and prove some additional information about what

happens during the execution of the while loop, on this input, in order to do this. Math-

ematical induction can often be used to prove the information that is needed.

• With that noted, let n be a nonnegative integer. Consider an array A with length n and

and integer key such that A[i] 6= key for every integer i such that 0 ≤ i < n. Note that

these form an input satisfying the precondition for the “Searching in an Array” problem

with input size n. Consider the following.

• Claim: Suppose that n is a nonnegative integer, A is an integer array with length n, and

that key is an integer such that A[i] 6= key for every integer i such that 0 ≤ i < n.

Consider an execution of the search algorithm with A and key as inputs.

For every integer h such that 1 ≤ h ≤ n, there are at least h executions of the body of the

loop, during the execution of the while loop as part of this execution of the algorithm.

Furthermore, the variable i has value h − 1 at the beginning of the hth execution of the

loop body, and this variable has value h at the end of this execution of the loop body.

• Exercise: After reviewing the notes from Reading #1, as needed, prove the above claim

— or, at least, make sure that you understand how to do this.

Note how the information about the value of i, that is included in the claim, makes it

easier to use induction to prove it!

• Now consider an execution of the search algorithm that includes exactly ℓ executions of

the body of the loop, for some nonnegative integer ℓ.

– One can see by an examination of the code that each execution of the body of the

loop includes exactly one step (namely, an execution of the step at line 3).

10



– Since the loop body does not include any break, exit or return statements,

there must always be exactly one more execution of the loop test than executions

of the loop body. Thus there are exactly ℓ+ 1 execution of the loop tests included

in this execution of the search algorithm.

• Each execution of the loop test includes one step, namely, the execution of the step at

line 2.

• The number of steps included in this execution of the loop is, therefore,

ℓ∑

j=1

1 +
ℓ+1∑

j=1

1 = ℓ+ (ℓ+ 1) = 2ℓ+ 1.

• Conclusion: Since the number of execution of the loop body for the input being consid-

ered is ℓ ≥ n, it follows that the number of steps included in the execution of the loop, for

this input, is greater than or equal to 2n+ 1.

• As previously noted, every execution of this algorithm includes exactly one step before

the loop (at line 1) and exactly two steps (either at lines 4 and 5, or at lines 4 and 6) after

it.

The number of steps included in an execution of the search algorithm on the input being

considered is, therefore, greater than or equal to 2n+ 4.

Conclusion: The worst-case running time Tsearch(n), of the search algorithm, for a nonneg-

ative input size n, is greater than or equal to 2n+ 4.

Note: Since the upper and lower bounds proved for this match, we have actually proved that

Tsearch(n) = 2n+ 4

for every nonnegative integer n.

Next consider the recursive search algorithm, recSearch, and the algorithm search2 that

calls it.

• Complication: When a recursive algorithm is executed on a given input, the execution

includes executions of the same algorithm on other inputs (with different sizes) too.

• Consequently, when computing a lower bound for the running time of a recursive algo-

rithm, you typically need to find lower bounds for all of the executions of the running

times of the algorithm on some set S of inputs,

– that includes the execution whose running time you wish to bound, and

11



– such that if the recursive algorithm is executed on one input in this set, and this

results in a recursive application of the algorithm, then the input for the recursive

application belongs to this set too.

• Once again, a recurrence can (at least, possibly) be formed and solved to prove a lower

bound in this case.

• With that noted, the following can be proved by induction on k:

Claim: Let n be a positive integer, let A be an integer array with length n, and let key be

an integer such that A[i] 6= key for every integer i such that 0 ≤ i < n.

Then the following property is satisfied for every nonnegative integer k:

If recSearch is executed with integer inputs first and last such that 0 ≤

first ≤ n, −1 ≤ last ≤ n− 1, and max(last− first + 1, 0) = k, using

the above array A and integer key as global data, then this execution of the

algorithm halts after exactly T̃recSearch(k) steps, where

T̃recSearch(k) =

{
2 if k = 0,

3 + T̃recSearch(k − 1) if k ≥ 1.

Proof: Let n, A and key be as in the statement of the claim. It can be established that the

property in the claim is satisfied, for all integers k such that 0 ≤ k ≤ n, using induction

on k. The standard form of mathematical induction will be used.

Basis: Suppose first that k = 0; then it is necessary and sufficient to show that if the

recSearch algorithm is executed with integer inputs first and last such that 0 ≤

first ≤ n, −1 ≤ last ≤ n− 1, and max(last − first + 1, 0) = 0, using the above

array A and integer key as global data, then this execution of the algorithm halts after

T̃recSearch(0) = 2 steps.

With that noted, consider any such execution of this algorithm. Since

max(last− first+ 1, 0) = 0,

last− first + 1 ≤ 0, so that first > last.

One can see from this, by inspection of the code, that this execution includes the test at

line 1, which passes, and an execution of the step at line 2 — after which the algorithm

halts.

Since two steps have been taken, this establishes the desired property in this case.

Inductive Step: Let h be an integer such that h ≥ 0. It is necessary and sufficient to use

the following

12



Inductive Hypothesis: If the recSearch algorithm is executed with integer in-

puts first and last such that 0 ≤ first ≤ n, −1 ≤ last ≤ n − 1, and

such that

max(last − first+ 1, 0) = h,

using the above array A and integer key as global data, then this execution

of the algorithm of the halts after exactly T̃recSearch(h) steps, where the func-

tion T̃recSearch as defined in the claim.

in order to define the following

Inductive Claim: If recSearch is executed with integer inputs first and last
such that 0 ≤ first ≤ n, −1 ≤ last ≤ n− 1, and such that

max(last− first + 1, 0) = h+ 1,

using the above array A and integer key as global data, then this execution

of the algorithm of the halts after exactly T̃recSearch(h + 1) steps, where the

function T̃recSearch as defined in the claim.

With that noted, consider an execution of the recSearch algorithm on inputs first
and last such that 0 ≤ first ≤ n, −1 ≤ last ≤ n− 1, and

max(last− first + 1, 0) = h+ 1,

using the above array A and integer key as global data.

Since h+1 ≥ 1 and max(last−first+1, 0) = h+1, last−first+1 = h+1, so

that last = first + h ≥ first. The execution of the algorithm therefore begins with

the execution of the test at line 1 — which fails, so that the execution of the algorithm

continues with the test at line 3.

Now, since 0 ≤ first ≤ n and −1 ≤ last ≤ n− 1 it follows (since first ≤ last, as

noted above), that

0 ≤ first ≤ last ≤ n− 1 = A.length − 1.

It is given that A[i] 6= key for every integer i such that 0 ≤ i ≤ n − 1 — so that, in

particular, A[first] 6= key, and the test at line 3 fails as well. The execution of the

algorithm therefore continues with the step at line 5.

The number of steps included in the execution of the step at line 5 is one more than the

number of step included in the recursive application of the algorithm started at that line.

One can see by inspection of the code that the inputs for this execution are the integers

first′ = first + 1 and last′ = last.

– Since 0 ≤ first ≤ n− 1 (as noted above), 0 ≤ first′ ≤ n.

13



– Since 0 ≤ last ≤ n− 1 (as noted above), 0 ≤ last′ ≤ n− 1.

– Since first′ = first + 1 and last′ = last,

(last′ − first′ + 1) = (last− (first + 1) + 1)

= (last− first + 1)− 1

= (h+ 1)− 1 = h.

Since the same global data (the array A and integer key) are used in this recursive

application as the one before it, it now follows the Inductive Hypothesis that the number

of steps included in the recursive application at line 5 is T̃recSearch(h). This implies that

the total number of steps included in the execution of the algorithm with inputs first
and last is exactly 3 + T̃recSearch(h).

Now, since h+ 1 ≥ 1, one can see by the definition of this function in the claim that this

number of steps is equal to T̃recSearch(h + 1) — as needed to complete the inductive

step and the proof of the claim.

• Exercise: Use the recurrence (from the previous claim)

k̃recSearch(k) =

{
2 if k = 0,

3 + T̃recSearch(k − 1) if k ≥ 1,

to prove that T̃recSearch(k) = 3k + 2 for every nonnegative integer k.

• Notice next that (since TrecSearch(k) represents worst-case running time)

T̃recSearch(k) ≤ TrecSearch(k)

for every nonnegative integer k, for the function Tresearch considered earlier in these

notes. The above information, and the upper bound for this function already proved, now

imply that

TrecSearch(k) = 3k + 2

for every nonnegative integer k, as well.

• Note next that the worst-case running time Tsearch2(n) of the search2 algorithm is

greater than or equal to the number of steps used by this algorithm when it is executed

with an array A of length n, and an integer key.

Indeed, an examination of the search2 algorithm should confirm that the number of

steps taken by this algorithm, on this input, is T̃recSearch(n) + 1 = 3n+ 3.

Conclusion: Tsearch2(n) ≥ 3n + 3 — and, together with the matching upper bound that was

already proved — this implies that

Tsearch2(n) = 3n+ 3

for every integer n ≥ 0.

14



It is OK if Upper Bounds and Lower

Bounds Do Not Agree.

Indeed, that is the more usual situation when you are analyzing algorithms that are more

complicated than the ones in these examples.

Worst-Case Running Time: A Strength and a Weakness

Strength: The worst-case running time of an algorithm for a given input size really does (by

definition) given an upper bound for the running time used when the algorithm is executed on

a valid input with that size — provided that there were no mistakes in its calculation (so that it

really is the worst-case running time), you can rely on that!

Weakness: Sometimes the worst-case running time can be very pessimistic in the following

sense: The running time for many or even most valid inputs with a given size might be much,

much smaller. It might be extremely unlikely that the “worst-case running time” is actually

required very often (if at all)!

Other Functions of Running Time, as Functions of Input Size

• The best-case running time of an algorithm on a nonnegative integer input size n is the

minimum of all the running times for executions of this algorithm on “valid” inputs (that

is, inputs satisfying the precondition for the problem to be solved) with size n.

This is rarely of independent interest. However, if it can be shown that the worst-case

running time of an algorithm and the best-case running time of the algorithm (for the

same input size) are (almost) the same, then it follows that the worst-case running time

is not an overly pessimistic measure.

This is not true for the example algorithms given above: By considering input arrays A
and an integer key such that key = A[0], one can confirm that the best case running

times of each of these algorithms is a small positive constant — not dependent on the

input size n at all!

• It is also possible to apply material from probability theory to define the expected run-

ning time, or average-case running time of an algorithm.

However, this generally requires that you make additional assumptions that might not

be valid: The set of all valid inputs of a given size n must be used to define a sample

15



space. A probability distribution for this sample space must, somehow, be defined —

which generally requires additional assumptions — and the expected running time can

then be defined as the expected value of a random variable.

This was — possibly — used in CPSC 331 or 319 when making claims about the ex-

pected behaviour of the QuickSort algorithm.

16


