
Reading #5

Analyzing the Running Time of a

Simple Recursive Algorithm

Recurrences

Example: The Algorithm We Started With

Recall the recursive algorithm maxInRange considered in the notes for Reading #2: If the

precondition for the problem it solves is satisfied when an execution of this algorithm begins

then it receives an integer array A with some positive length n. and integers low and high such

that

0 ≤ low ≤ high ≤ n− 1

as its inputs.

It will be useful to analyze the running time of this algorithm as a function of the value

k = high− low+ 1

because this is the number of entries of the array A that this algorithm examines when executed

with these inputs. Since low ≤ high, k ≥ 1 if the precondition for the computational problem

being solved is satisfied.

The algorithm is as follows.

integer maxInRange (integer[] A, integer low, integer high) {

1. if (low == high) {

2. return A[low]

} else {

3. integer mid := floor((low + high)/2)

4. return max(maxInRange(A, low, mid), maxInRange(A, mid + 1, high))

}

}

1

Let T (k) be the number of steps executed by this algorithm for a given value of k — assuming,

as usual, that the uniform cost criterion is used to define this.

• If k = 1 then low = high, so that the test at line 1 is passed and the execution of the

algorithm ends after the execution of step 2: T (1) = 2.

Consider, instead, an execution of the algorithm such that k ≥ 2 — so that high = low+k−1 ≥

low+ 1.

• This time, the test at line fails, so the execution of the algorithm continues with an exe-

cution of step 3.

• It will be useful to notice that, when this step is executed, mid receives the value
⌊

(low+ high)

2

⌋

=

⌊

2× low+ k − 1

2

⌋

= low+

⌊

k − 1

2

⌋

.

• The execution of the algorithm ends with an execution of step 4 — but it also calls itself

recursively, twice — with the same input array A, but

– with the same input low, but with high replaced by mid, and

– with low replaced by mid+ 1 and with the same input high.

When defining running times for recursive algorithms we must also include the times for

these recursive calls, and we should do so as accurately as we can.

• For the first recursive execution, k = high− low+ 1 is replaced by

mid− low+ 1 =

⌊

k − 1

2

⌋

+ 1.

The cost of this recursive application is, therefore,

T

(⌊

k − 1

2

⌋

+ 1

)

.

• For the second recursive execution, k = high− low+ 1 is replaced by

high− (mid+ 1) + 1 = high− low−

⌊

k − 1

2

⌋

= k −

⌊

k − 1

2

⌋

=

⌈

k − 1

2

⌉

.

The cost of this recursive application is, therefore,

T

(⌈

k − 1

2

⌉)

.

2

Conclusion: When executed with the problem’s precondition satisfied, and such that k =
high− low+ 1 ≥ 1, the algorithm carries out T (k) steps, where

T (k) =

{

2 if k = 1,

T
(⌊

k−1

2

⌋

+ 1
)

+ T
(⌈

k−1

2

⌉)

+ 3 if k ≥ 2.

Note: When algorithms are more complicated we will often get inequalities that look like this,

instead of equations.

That’s OK... They will still be useful!

Recurrences: Definition

Definition 1. In mathematics, a recurrence (or “recurrence relation”) is generally defined to

be a relation that recursively defines the elements of a sequence of values.

If one considers the sequence of values

T (1), T (2), T (3), T (4), . . .

then one can view the above expression

T (k) =

{

2 if k = 1,

T
(⌊

k−1

2

⌋

+ 1
)

+ T
(⌈

k−1

2

⌉)

+ 3 if k ≥ 2.

to be a “recurrence” (that defines this sequence).

Solving Recurrences

Sometimes a recurrence is simple enough that it suffices to compute initial values, look for a

pattern, and guess a solution.

Example: The recurrence for T (k) can be used to confirm that

• T (1) = 2;

• T (2) = T (1) + T (1) + 3 = 2 + 2 + 3 = 7;

• T (3) = T (2) + T (1) + 3 = 7 + 2 + 3 = 12;

• T (4) = T (2) + T (2) + 3 = 7 + 7 + 3 = 17;

• T (5) = T (3) + T (2) + 3 = 12 + 7 + 3 = 22; and

• T (6) = T (3) + T (3) + 3 = 12 + 12 + 3 = 27.

3

Notice that T (k) = T (k − 1) + 5 for every positive integer k such that 2 ≤ k ≤ 6. Based on

this, one might guess that there is a constant c such that

T (k) = 5k + c

for every positive integer k.

Since T (1) = 2 = 5 · 1− 3, it must be the case that c = −3, so that

T (k) = 5k − 3

for every positive integer k, if this guess is correct.

Verifying Recurrences

If a guessed solution for a recurrence is correct then it is often possible to use mathematical

induction to prove this — as shown, for the ongoing example, below.

Claim 2. If T is a function of a positive integer k such that

T (k) =

{

2 if k = 1,

T
(⌊

k−1

2

⌋

+ 1
)

+ T
(⌈

k−1

2

⌉)

+ 3 if k ≥ 2.

then T (k) = 5k − 3 for every positive integer k.

The following lemma will be of use when proving this claim.

Lemma 3. Suppose that h is an integer such that h ≥ 1.

(a) 1 ≤
⌊

h

2

⌋

+ 1 ≤ h.

(b) 1 ≤
⌈

h

2

⌉

≤ h.

(c)
(⌊

h

2

⌋

+ 1
)

+
⌈

h

2

⌉

= h+ 1.

Proof. It will be helpful to consider the cases that h is even, and that h is odd, separately.

Case: h is even. Since h is a positive integer, h = 2ℓ for an integer ℓ ≥ 1.

• In this case,
⌊

h

2

⌋

+ 1 =
⌊

2ℓ

2

⌋

+ 1 = ℓ + 1, so that 1 ≤
⌊

h

2

⌋

+ 1 = ℓ + 1 ≤ 2ℓ = h, as

required to establish part (a) of the claim in this case.

• Furthermore,
⌈

h

2

⌉

=
⌈

2ℓ

2

⌉

= ℓ, so that 1 ≤
⌈

h

2

⌉

= ℓ ≤ 2ℓ = h, as required to establish

part (b) of the claim in this case as well.

• Finally,
(⌊

h

2

⌋

+ 1
)

+
⌈

h

2

⌉

= (ℓ+1)+ ℓ = 2ℓ+1 = h+1, as required to establish part (c)

of the claim in this case.

4

Case: h is odd. Since h is a positive integer, h = 2ℓ+ 1 for an integer ℓ ≥ 0.

• In this case,
⌊

h

2

⌋

+ 1 =
⌊

2ℓ+1

2

⌋

+ 1 = ℓ+ 1, so that 1 ≤
⌊

h

2

⌋

+ 1 = ℓ+ 1 ≤ 2ℓ+ 1 = h,

as required to establish part (a) of the claim in this case.

• Furthermore,
⌈

h

2

⌉

=
⌈

2ℓ+1

2

⌉

= ℓ + 1 as well, so that 1 ≤
⌈

h

2

⌉

= ℓ+ 1 ≤ 2ℓ+ 1 = h, as

required to establish part (b) of the claim in this case as well.

• Finally,
(⌊

h

2

⌋

+ 1
)

+
⌈

h

2

⌉

= (ℓ + 1) + ℓ + 1 = 2ℓ + 2 = h + 1, as required to establish

part (c) in this case, and to complete the proof of the lemma.

Proof of Claim 2. The claim will be proved by induction on k. The strong form of mathematical

induction will be used, and the case that k = 1 will be considered in the basis.

Basis: If k = 1 then T (k) = 2, by definition, while 5 · k − 3 = 5 · 1− 3 = 2 as well, as required

to establish the claim in this case.

Inductive Step: Let h be an integer such that h ≥ 1. It is necessary and sufficient to use the

following

Inductive Hypothesis: T (j) = 5j − 3 for every integer j such that 1 ≤ j ≤ h.

to prove the following

Inductive Claim: T (h+ 1) = 5(h+ 1)− 3.

With that note, let h be an integer such that h ≥ 1, that is, a positive integer.

In this case

T (h+ 1) = T

(⌊

h

2

⌋

+ 1

)

+ T

(⌈

h

2

⌉)

+ 3 (by definition, since h+ 1 ≥ 2)

= 5 ·

(⌊

h

2

⌋

+ 1

)

− 3 + T

(⌈

h

2

⌉)

+ 3

(by the Inductive Hypothesis and part (a) of the above lemma)

= 5 ·

(⌊

h

2

⌋

+ 1

)

− 3 + 5 ·

⌈

h

2

⌉

− 3 + 3

(by the Inductive Hypothesis and part (b) of the above lemma)

= 5 ·

((⌊

h

2

⌋

+ 1

)

+

⌈

h

2

⌉)

− 3 (gathering terms)

= 5 · (h+ 1)− 3 (by part (c) of the above lemma)

as to required to establish the Inductive Claim, complete the Inductive Step, and establish the

claim.

5

An Occasional Mistake

On tests and assignments, students are sometimes asked to give recurrences bounding the

running times of algorithms like maxInRange.

If the algorithm given in the question is maxInRange then the expected answer would be

T (k) =

{

2 if k = 1,

T
(⌊

k−1

2

⌋

+ 1
)

+ T
(⌈

k−1

2

⌉)

+ 3 if k ≥ 2.

where k = low− high+ 1, as above.

Instead of this, they sometimes give either the answer

T (k) = 5k − 3

or, possibly, the answer

T (k) =

{

2 if k = 1,

5k − 3 if k ≥ 2.

There are several reasons why this is problematic:

1. The other answers are — at least arguably — not recurrences at all! They do not given

an expression that is equal to (or bounds) the value of a function at one value, using

values of the function (or bounds for it) at smaller values.

So, a marker would have reason to wonder whether the student even knows what the

word “recurrence” means!

2. While the “expected answer” is something that can be derived directly from the source

code (or pseudocode) the other answers require some extra calculations — or, perhaps,

guesswork. Even if a marker is willing to accept a “solution for a recurrence” instead of

the recurrence itself, some sort of explanation of how the student actually obtained the

solution — or a proof — would be also be expected.

3. The situation is even more complicated if the student has made an arithmetic or logical

error somewhere along the way — so that answer returned was 2k, k2, or 2k instead of

5k − 3... It is hard to give part marks under these circumstances.

4. Finally if the expected recurrence was reasonably easy to derive, the next question might

be something like

“Now use your recurrence to prove that T (k) = 5k − 3 for every integer n ≥ 0.”

That is hard to do if the student never gave a recurrence at all — especially if arithmetic

or logical errors also got made.

6

