
Proving Termination and Analyzing the Running Time of a

Simple Algorithm with a While Loop

Solutions for a Suggested Exercise

This exercise considered the following computational problem.

Sum of Array Elements

Precondition: An integer array A with some positive length n is given as input.

Postcondition: The value
n−1∑

i=0

A[i]

is returned as output.

It also concerned the following algorithm.

integer arraySum (integer[] A) {

1. integer sum := A[0]

2. integer i := 0

3. while (i < A.length − 1) {

4. i := i + 1

5. sum := sum + A[i]

}

6. return sum

}

1. You were first asked to state a bound function for the while loop in the above algorithm

and to prove that your answer is correct.

Solution: The function A.length−i−1 = n−i−1 is a bound function for the while
loop in this algorithm.

1

To see that this is the case, it suffices to show that this function satisfies all the required

properties included in the definition of a “bound function for a while loop”:

• Since A is an input integer array, and i is an integer variable whose value has de-

fined before the array has been reached, this is a well-defined, total, integer-valued

function of the algorithm’s inputs and local variables (which have all been defined

with values given before the array has been reached, if the function depends on

them).

• The array A and its length, n, are not changed when the body of this while loop is

executed. On the other hand, the value of i is increased by one when the step at

line 4 is executed — so that the value of this function is decreased by at least one

(indeed, by exactly one) every time the body of this while loop is executed.

• Finally, if the value of this function is less than or equal to zero then A.length −

i− 1 ≤ 0 — so that i ≥ A.length− 1, and loop test (at line 3) would fail if it was

checked.

Thus this function satisfies all the properties of a “bound function for a while loop”, as

required.

2. You were then asked to prove that this algorithm terminates whenever it is executed when

the precondition for the “Sum of Array Elements” problem is initially satisfied. Recall that

it now follows (since its partial correctness has also been established) that this algorithm

correctly solves this problem.

Solution: To begin, consider any execution of the while loop of this algorithm that is

part of an execution of the algorithm starting with the precondition for the “Sum of Array

Problems” satisfied.

• Since the body of the while loop consists of only two simple assignment state-

ments — at lines 4 and 5 — every execution of the body of this while loop ends.

• As shown above, this while loop has a bound function.

It now follows by “Loop Theorem #2” that an execution of this while loop, that is part of

an execution of this algorithm with its problem’s precondition satisfied, does eventually

terminate.

Now consider any execution of the algorithm that begins with the precondition for the

“Sum of Array Elements” problem satisfied.

This execution of the algorithm includes the execution of two simple assignment state-

ments (each of which will halt when executed) before the while loop is reached and

executed. As noted above, this execution of the while loop eventually ends — and the

execution of the algorithm then terminates after the execution of the step at line 6.

2

Thus every execution of this algorithm, beginning with the precondition for the “Sum of

Array Elements” satisfied, terminates, as claimed.

3. You were also asked to use this to state the number of steps executed by this algorithm,

when it is executed with an input array A with positive length n.

Solution: Since i = 0 when the while loop is reached, the initial value of the bound

function is A.length−1 = n−1, and this is an upper bound for the number of executions

of the body of the while loop included in an execution of the loop.

However, something more can be said for this particular while loop: Note that an execu-

tion of the body of the while loop always decreases the value of the bound function by

exactly one. Furthermore, a comparison of the loop test at line 3 and the bound function

suffices to confirm that the loop test fails if and only if the value of the bound function

is less than or equal to zero. Furthermore, the body of the loop does not contain any

statements that could cause the loop to terminate before the bottom of the loop body

is reached and the loop test is checked again. Under these circumstances1, it can be

argued that the number of executions of the loop body is equal to the initial value of the

bound function — in this case, n− 1.

Since there must be one more execution of the loop test — that fails — in order for an ex-

ecution of this while loop to terminate, it also follows that there are exactly n executions

of the loop test, at line 3, included in an execution of this while loop.

Since the loop test is the simple test “i < A.length − 1”, — which does not call

subroutines involving the execution of other algorithms — Ttest(j) = 1 for every integer j

such that 1 ≤ j ≤ n.2 It follows that the total number of steps included in all executions

of the loop test is
n∑

j=1

Ttest(j) =

n∑

j=1

1 = n.

Similarly, the loop body consists of a pair of simple assignment statements, at lines 4
and 5,so that Tbody(j) = 2 for every integer j such that 1 ≤ j ≤ n − 1. It follows

that the total number of steps, included in all executions of the loop body as part of an

execution of this while loop (again, if the precondition of the problem was satisfied when

the execution of the algorithm began) is

n−1∑

j=1

Tbody(j) =

n∑

j=1

2 = 2n− 2.

The total number of steps included in an execution of this loop is therefore

n+ (2n − 2) = 3n− 2.

1and only under these circumstances...
2The terminology and notation introduced in the notes for this reading are now being used here.

3

Now consider an execution of the algorithm when the precondition for the “Sum of Array

Elements” problem is satisfied. There are two statements (at lines 1 and 2) that are

executed before the while loop is reached and executed, and one statement (at line 6)

that is reached and executed after the execution of the loop ends, before the execution

of the algorithm ends.

It follows that the number of steps used by this algorithm, if the precondition for its prob-

lem is satisfied when execution begins and the input array A has positive length n, is

2 + (3n − 2) + 1 = 3n+ 1.

Note: It will generally not be possible to compute the number of steps executed exactly

when more complicated algorithms are considered. Instead, the techniques introduced

in these readings will be used to find reasonably accurate upper bounds for this.

4

