
Reading #4

Proving Termination and Analyzing the Running Time

of a Simple Algorithm with a While Loop

Example Problem and Algorithm

Once again, consider the following computational problem.

Maximal Element of Integer Array

Precondition: An integer array A, with positive length n, is given as input.

Postcondition: The largest element in the set

{A[0], A[1], . . . , A[n − 1]}

is returned as output.

Consider, as well, the following algorithm.

integer arrayMax (integer[] A) }

1. if (A.length == 1) {

2. return A[0]

} else {

3. integer i := 0

4. integer maxSoFar := A[0]

5. while (i < A.length - 1) {

6. i := i + 1

7. if (maxSoFar < A[i]) {

8. maxSoFar := A[i]

}

}

9. return maxSoFar

}

}
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During the previous reading, the partial correctness of an algorithm for a given computational

problem was defined, and it was proved that this algorithm is partially correct.

However, the algorithm has not been proved to be correct — because it has not been proved

that an execution of this algorithm will always eventually end, if it begins with its problems’s

precondition being satisfied.

Bound Functions for While Loops

Definition 1. A bound function for a while loop is a an well-defined integer-valued, total

function of some of the inputs, variables and global data that are accessed and modified when

the loop is executed — specifically, some of the inputs, variables and global data that are

defined when the loop is reached — and that satisfies the following additional properties, if the

computational problem’s precondition was satisfied when execution of the algorithm began:

(a) When the loop body is executed, the value of this function is decreased by at least one

before the loop’s test is checked again (if it is reached again, at all).

(b) If the value of this function is less than or equal to zero and the loop’s test is checked then

the test fails (ending this execution of the loop).

Note: This is sometimes called a “loop variant.”

Claim 2. The function f(A, i) = A.length − i − 1 is a bound function for the while loop in

the arrayMax algorithm.

Proof.

• Since A is an input integer array and i is an integer variable, defined and initialized at

step 3, this is certainly a well-defined integer-valued total function of some of the inputs,

variables and global data that are defined when the while loop in the arrayMax algorithm

is reached.

• When the body of the while loop is executed the value of i is increased by one (at

step 6), and the type and length of A are not changed — so that the value of f is de-

creased by one.

• If the value of f is less than or equal to zero then A.length − i − 1 ≤ 0, so that

i ≥ A.length− 1 and the loop test (at line 5) would fail when checked.

It follows, by the definition of a “bound function for a while loop”, that f is a bound function for

the while loop in the arrayMax algorithm, as claimed.
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Proving Correctness

Proving Termination

The following result will be useful when proving that an algorithms terminates (when executed

with the precondition for its problem satisfied).

Theorem 3 (Loop Theorem #2). Consider a while loop

while (t) do { S }

with a loop test t and a loop body S. Suppose that the following properties are satisfied.

(a) If the problem’s precondition is satisfied when an execution of the algorithm including this

loop begins, then every execution of the loop body (that is part of this execution of the

algorithm) ends.

(b) A bound function for this while loop exists.

Then every execution of this while loop, included in an execution of the algorithm beginning

with the problem’s precondition satisfied, ends.

Furthermore, the value of the bound function immediately before the beginning of an execution

of this loop is an upper bound for the number of times that the loop body is executed before

this execution of the loop ends.

A supplementary document, including a proof of this result, is also available. It is possible

to prove that the execution of a while loop — that is part of the execution of an algorithm

beginning with its problem’s precondition satisfied — always halts, simply by confirming that all

of the conditions in the above result are satisfied.

Claim 4. If the algorithm arrayMax is executed when the precondition for the “Maximal Element

of Integer Array” problem is satisfied then this execution of the algorithm eventually terminates.

Proof. Consider an execution of the arrayMax algorithm when the precondition for the “Max-

imal Element of Integer Array” problem is satisfied. An integer array A, with positive length n,

has been given as input.

• If n = 1 then the test at step 1 is checked and passed, and the execution of the algorithm

ends after the execution of step 2, as required to establish the claim.

• If n ≥ 2 then the test at step 1 fails, so that steps 3 and 4 are reached, and the while

loop is reached and executed.

The body of this loop includes only three steps (one of which is not always executed)

and certainly terminates whenever it is executed.

It follows by Claim 2 that this while loop has a bound function.
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It now follows by Theorem 3 that every execution of this while loop, during an execution

of the algorithm starting with its problem’s precondition satisfied, will eventually end.

The execution of the algorithm will also end, after an execution of step #9.

It follows that every execution of this algorithm — beginning with its problem’s precondition

satisfied — terminates, as claimed.

Completing a Proof of Correctness

Claim 5. If an algorithm, for a given computational problem, is both partially correct and ter-

minates, whenever it is executed when its problem’s precondition is initially satisfied, then this

algorithm is correct.

Proof. This is a straightforward consequence of the definitions of “partial correctness”, “termi-

nation”, and “correctness”.

Corollary 6. The arrayMax algorithm is correct — that is, it correctly solves the “Maximal

Element of Integer Array” problem.

Proof. This is now a consequence of Claim 5, the partial correctness of this algorithm (estab-

lished during the previous reading), and Claim 4.

Bounding Running Time

We will use “analytical techniques” to discover bounds for running times — as well as storage

requirements — and then write proofs that the bounds are correct (if this is not obvious) These

techniques are the focus of the rest of this reading and all of the next one.

A Simplification: The “Uniform Cost Criterion”

This is complicated by the fact that is not clear how much the “running time” of a statement in

a program would be. Indeed, this might not even be well-defined!

The following is, therefore, a simplification or abstraction— which often allows useful analyses

of the running times and storage requirements to be performed.

Definition 7. The Uniform Cost Criterion is an abstraction that provides definitions for the

running times of steps in an algorithm and for the storage requirements for data accessed and

modified by an algorithm: Each step in an algorithm is defined to have running time 1, and

each value from an elementary data type (such as integer or string) is defined to have cost

one.

Of course, it is not always clear whether an instruction includes only one “step” or several of

them. In order to simplify things further it will be assumed, for the rest of these readings, that

executions of each of the numbered steps in algorithms should have running time one.
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Bounding the Number of Steps Needed to Execute a Loop

Recall that Theorem 3 asserts that the value of a bound function for a while loop, immediately

before the execution of the loop begins, is an upper bound for the number of executions of the

loop body included in this execution of the loop.

• Claim 2 establishes that A.length − i − 1 = n − i − 1 is a bound function for the

arrayMax algorithm. Since i is assigned the value 0 at line 3, and the value of i is not

changed by the execution of the step at line 4, this function has value n− 1 immediately

before the execution of the while loop begins — so there are at most n − 1 executions

of the body of this while loop.

Note that for this particular example (but not in general)

• The value of the bound function f is decreased by exactly one, every time the loop body

is executed.

• The loop’s test fails if and only if the value of f is less than or equal to zero when the

test is checked.

• The loop’s test must be checked, and the test must fail, in order to an execution of this

loop to end — there are no return statements in the loop body, or other statements that

could cause the execution of the loop to end in another way.

Proof Exercise: Modify the proof of Loop Theorem #2 (in the supplemental notes) to prove

that an execution of the while loop of this algorithm always includes exactly n− 1 executions

of the loop body.

The number of execution of the loop test will always be at most one more than the number of

executions of the loop body — because the loop test is checked before every execution of the

loop body and (unless the use of something like a break statement causes the execution of

the loop to end, or a return statement causes the execution of the algorithm to end) there will

be one more execution of the loop test, which fails, in order to end the execution of the loop.

• It follows that there are n executions of the loop test at line 5.

Suppose now that it has been determined that there at most k executions of the body of a

while loop during an execution of a while loop — so that there are at most k executions of

the loop test.

For 1 ≤ j ≤ k + 1, let Ttest( j ) be the number of steps used for the jth execution of the loop

test (setting this to be 0 if the loop test is not executed a jth time).

• In the example being considered, Ttest( j ) = 1 for 1 ≤ j ≤ n.

Then the total cost of all executions of the loop’s test, in an execution of the loop, is

k+1
∑

j=1

Ttest( j ).
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• In the example being considered, this is

n
∑

j=1

1 = n.

For 1 ≤ j ≤ k, let Tbody ( j ) be the number of steps used for the jth execution of the loop body

— which is 0 if there are fewer than j executions of the loop body.

• The loop body consists of a sequence of three statements — lines 6–8. The first two

are always executed, with the third executed only if the test at line 7 is passed. None of

these causes the loop body to exit before the bottom of the loop is reached, and none of

these calls other methods — so that 2 ≤ Tbody( j) ≤ 3 for 1 ≤ j ≤ n−1, for the example

being considered.

Then the total cost of all of the executions of the loop body is

k
∑

j=1

Tbody( j ).

• In the example being considered, this is at least 2n− 2, and at most 3n− 3.

Since every step, in an execution of a while loop, is either

• part of an execution of the loop’s test, or

• part of an execution of the loop body,

it follows that the number of steps required for an execution of a while loop is

k+1
∑

j=1

Ttest( j ) +

k
∑

j=1

Tbody ( j )

• In the example being considered, this is at least 3n− 2 and at most 4n− 3.

Bounding the Number of Steps Needed to Execute and Algorithm

If an algorithm has multiple loops then the above process must be applied to each loop —

working from the innermost loop out to the outermost loop, for nested loops — and adding in

the number of steps that are outside the loops after that.

• If the length of A is n = 1 then the algorithm executes exactly two steps, namely, the

steps at lines 1 and 2.

• If the length of A is n ≥ 2 then the test at line 1 fails, so that the execution of the algorithm

on input n includes an execution of the while loop.
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– Exactly 3 statements (namely, the statements at lines 1, 3, and 4) are executed

before the while loop is reached.

– By the above analysis, the execution of the while loop includes at least 3n − 2
steps and at most 4n− 3 steps.

– Exactly one statement (namely, the statement at line 9) is executed after the exe-

cution of the loop ends.

It follows that the execution of the algorithm, on an input array A with length n ≥ 2,

includes at least 3n+ 2 steps and at most 4n+ 1 steps.

Conclusion: The number of steps executed by the arrayMax algorithm, when it is given

an input array A with positive length n, is at most

T (n) =

{

2 if n = 1,

4n+ 1 if n ≥ 2.

Note: This is a function of the input, n, as required here!

A Mistake That Sometimes Gets Made: Confusing the bound function with its initial

value when bounding the cost of the loop — so that the expression that gets reported

also mentions the variable i. Since i is not an input (and its value changes during the

execution of the algorithm) this is meaningless...

Bounding Storage Requirements

Note that this algorithm uses only three inputs and variables, namely,

• A — an integer array with length n (so that it costs n to store it, because this requires the

storage of n integers)

• i — an integer variable (so that it costs 1 to store it)

• maxSoFar — another integer variable (so that it costs 1 to store it)

The uniform cost criterion has been used to calculate the storage requirements for each

input or variable, above.

Note, as well that the variables i and maxSoFar are only declared and stored if n ≥ 2.

It suffices to add the storage requirements for each input and variable to define the storage

requirements for the algorithm — so the storage requirements for this algorithm are given by

the function

S(n) =

{

1 if n = 1,

n+ 2 if n ≥ 2.
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Summations

Notation for Summations

Assumption: You have seen summations of the form

b
∑

j=a

T ( j )

where a and b are integers and “T ( j )” is some function of j.

• If a > b then

b
∑

j=a

T ( j ) = 0, because this is an “empty sum.”

•

a
∑

j=a

T ( j ) = T (a).

•
a+1
∑

j=a

T ( j ) = T (a) + T (a+ 1).

•

a+2
∑

j=a

T ( j ) = T (a) + T (a+ 1) + T (a+ 2).

•

a+3
∑

j=a

T ( j ) = T (a) + T (a+ 1) + T (a+ 2) + T (a+ 3).

... and so on.

Note: There is nothing special about the name j:

a+3
∑

h=a

T (h) = T (a) + T (a+ 1) + T (a+ 2) + T (a+ 3)

and
a+3
∑

discombobulator=a

T (discombobulator ) = T (a) + T (a+ 1) + T (a+ 2) + T (a+ 3)

as well.

You are possibly not so familiar with another “notation for summations” that sometimes gets

used as well: If “condition on j” is a condition that identifies a set of elements that j might

belong to, and a Boolean condition that is satisfied by finitely many elements of that set, then
∑

condition on j

T ( j )

is the sum that includes T (h) for every element h of the set that satisfies the condition.
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•
∑

j∈Z and a≤j≤b

T ( j ) is just another way to write

b
∑

j=a

T ( j ).

•
∑

j∈Z,1≤j≤10,
and j is prime

T ( j ) = T (2) + T (3) + T (5) + T (7).

Some Useful Identities

1. If a and b are integers such that a ≤ b+ 1 then

b
∑

j=a

1 = b− a+ 1.

In each of the remaining cases, n is an integer such that n ≥ 0.

2.

n
∑

j=1

j =
n(n+ 1)

2
.

3.

n
∑

j=1

j2 =
n(n+ 1)(2n + 1)

6
.

4.

n
∑

j=1

j3 =
n2(n+ 1)2

4
.

Mathematical induction can often be used to provide identities like the above ones.

Indeed, it is possible that you were introduced to summations, in a discrete mathematics

course, in order to introduce problems that you could solve using induction!

Suggested Exercise (if you feel like you need more practice using mathematical induction):

Prove that the last three identities, on the previous slide, are all correct.

Other Stuff

How Else Might We Measure Running Time?

We might also run the code and time its execution.

An Advantage of This Approach:

• It does not require simplifying assumptions, like the “uniform cost criterion.”
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A Problem With This Approach:

• Execution time is influenced by many factors — some of which have nothing, at all, to do

with the algorithm used:

– Hardware: How fast is the CPU? How many CPU’s are there?

– Compiler and System Software: Which OS is being used?

– Simultaneous User Activity: How many other people are using this system at the

same time as you are? What are they using it for?

– Choice of Input Data: Running times can be very different for different inputs —

even ones with the same “size”.

– The Skill of the Programmer(s) Who Wrote the Program

What Else Might We Measure?

Other things that are important and that are sometimes measured include:

• The space required to store the program, itself: This might be important if the program

is to be stored on a low-memory device (like a smart card).

• The time required to code — and maintain — the program. Programmers must be paid

and software development usually has deadlines!
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