
Proving the Partial Correctness of a Simple Algorithm

with a While Loop

Solutions for a Suggested Exercise

In this exercise you were asked to consider the following computational problem.

Sum of Array Elements

Precondition: An integer array A with some positive length n is given as input.

Postcondition: The value
n−1
∑

i=0

A[i]

is returned as output.

You were also asked to consider the following algorithm (as an algorithm that can be used to

solve the above problem).

integer arraySum (integer[] A) {

1. integer sum := A[0]

2. integer i := 0

3. while (i < A.length − 1) {

4. i := i + 1

5. sum := sum + A[i]

}

6. return sum

}

1

1. You were asked to prove that the following is a loop invariant for the while loop in this

algorithm.

Loop Invariant:

(a) A is an input integer array with some positive length n.

(b) i is an integer variable such that 0 ≤ i ≤ n− 1.

(c) sum is an integer variable such that

sum =

i
∑

j=0

A] j].

Solution: Loop Theorem #1 will be used to prove this.

• The execution of the loop test at line 3, “i < A.length − 1”, has no side-effects.

That is, it does not modify the value of any input, variable, or global data.

• Consider an execution of this algorithm beginning with the precondition of the “Sum

of Array Elements” problem satisfied, so that an integer array A with some positive

length n has been given as input. The execution of the algorithm begins with the

executions of steps 1 and 2 before the while loop is reached. Note that this loop

is only executed one: Either the first execution of the loop fails to terminate at all,

or step 6 is executed and the execution of the algorithm also ends after the first

execution of the loop ends.

Since neither step 1 nor step 2 modifies the array A (or its length, n) part (a) of the

claimed “loop invariant” holds at the beginning of the execution of the loop, because

it is implied by the precondition for the computational problem being solved.

Since i is declared to be an integer variable 0 ≤ n − 1 when step 5 is executed,

part (b) of the claimed “loop invariant” holds at the beginning of the execution of the

loop as well.

Since sum is declared to be an integer variable with value

A[0] =
i

∑

j=0

A[j]

at line 1, and the value of sum is not changed by the execution of the step at line 2,

part (c) is also satisfied at the beginning of the execution of the loop.

• Consider an execution of the body of the loop when the claimed “loop invariant” is

satisfied at the beginning of this execution of the loop body.

It follows by part (a) of the claimed “loop invariant” that A is an integer array with

some positive length n at the beginning of this execution of the body of the loop.

2

Neither A nor its length, n, are changed when the steps at lines 4 and 5, so this

is still true, and part (a) of the claimed “loop invariant” is still satisfied, when this

execution of the body of the loop ends.

It follows by part (b) of the claimed “loop invariant” that i is an integer variable such

that 0 ≤ i ≤ n−1 when this execution of the body of the loop begins. Furthermore,

since the loop test at line 3 has just been checked and passed, i < n−1 and, since

the value of i and n are both integers, 0 ≤ i ≤ n− 2 at this point.

The value of i is increased by one at line 4, so that 1 ≤ i ≤ n − 1 after this step

has been executed. Since step 5 does not change the value of i, 1 ≤ i ≤ n− 1 —

and part (b) of the claimed “loop invariant” is satisfied — at the end of this execution

of the loop body.

Part (c) of the claimed “loop invariant”’ implies that sum is an integer variable with

value
i

∑

j=0

A[j]

at the beginning of this execution of the loop body. Since the value of i is increased

by one when the step at line 4 is executed, sum has value

i−1
∑

j=0

A[j]

after the execution of this step. However, since the value of sum is increased by A[i]
when the step at line 5, sum is an integer variable with value





i−1
∑

j=0

A[j]



 + A[i] =
i

∑

j=0

A[j],

and part (c) of the claimed “loop invariant” is also satisfied, at the end of this exe-

cution of the loop body.

Thus the claimed “loop invariant” is satisfied, once again, at the end of this execu-

tion of the body of the loop.

It now follows by Loop Theorem #1 that the claimed “loop invariant” is correct. That is, it

really is a loop invariant for the while loop in this algorithm.

2. You were then asked to use this, as needed, to prove that the arraySum is partially

correct (when considered as an algorithm for the “Sum of Array Elements” problem).

Solution: Consider an execution of this algorithm that begins with the precondition for

the “Sum of Array Elements” problem satisfied — so that A is an integer array with some

positive length n.

3

One can see, by inspection of the algorithm, that the algorithm has no extra inputs, does

not access any undocumented global data, and makes no undocumented changes to

data: The signature of the algorithm can be examined to confirm that the algorithm has

no extra inputs, and the executable statements at lines 1–6 can be examined to confirm

that these other properties are also satisfied.

The execution of the algorithm begins with the execution with the steps at lines 1 and 2
before the while loop is reached. Either the execution of the while loop terminates or

it does not.

If the execution of the loop ends then it follows by part (b) of the loop invariant that i is

an integer variable such that 0 ≤ i ≤ n − 1 before the step at line 6 is reached and

executed. On the other hand, since the loop test at line 3 was just checked and failed,

i ≥ A.length − 1 = n− 1 as well. Thus i = n− 1.

It now follows by part (c) of the loop invariant that sum is an integer variable with value

i
∑

j=0

A[j] =
n−1
∑

j=0

A[j]

immediately before the execution of the step at line 6. The value

n−1
∑

i=0

A[i]

is therefore returned as output, when the step at line 6 is executed and the execution

of the algorithm ends. The postcondition for the “Sum of Array Elements” problem has

therefore been satisfied, as needed to establish condition (a) in the definition of “partial

correctness”.

On the other hand, if the execution of the loop does not terminate then the execution of

the algorithm certainly does not terminate, either — as needed to establish condition (b)

in the definition of “partial correctness”.

It follows that this algorithm is partially correct.

4

