
Proving the Correctness of a Simple Recursive Algorithm

Solutions for Suggested Exercise

For this exercise, you were asked to recall the problem “Maximal Element in Part of an Integer

Array”, considered in the “lecture” part of this unit, and you were asked to consider the following

recursive algorithm.

maxInRange2 (integer[] A, integer low, integer high) {

1. if (low == high) {

2. return A[low]

} else {

3. return max(maxInRange2(A, low, high − 1), A[high])

}

}

1. You were asked to sketch (or, better yet, write out in full) a proof that this algorithm also

correctly solves the “Maximal Element in Part of an Integer Array” problem.

As part of this you were asked what form(s) of mathematical induction can be used to

prove this claim.

Solution: Recall the precondition and postcondition for the “Maximal Element in Part of

an Array” problem. One can see, by inspection of the pseudocode, that this algorithm

does not access or modify data in any way that is unmentioned in the specification of

requirements for this problem (it has no “undocumented side-effects”) — so a consider-

ation of this specification of requirements confirms that it is necessary and sufficient to

prove the following in order to prove the correctness of the maxInRange2 algorithm:

Claim: If the maxInRange2 algorithm is executed with an input array A with some posi-

tive length n, and with integer inputs low and high such 0 ≤ low ≤ high ≤ n−1, then

this execution of the algorithm eventually ends, and the value

max(A[low],A[low+ 1], . . . ,A[high])

is returned as output.

1

Proof: By induction on high − low. The standard form of mathematical induction will

be used.

Basis: Suppose first that high − low = 0, so that 0 ≤ low = high ≤ n − 1. Then —

during an execution of the maxInRange2 algorithm with these inputs — the test at line 1
is passed, so that step 2 is executed after that. One can see by examination of this line

of the pseudocode that

max(A[low],A[low+ 1], . . . ,A[high]) = A[low]

is then returned as output as the execution of the algorithm ends — establishing the

claim in this case.

Inductive Step: Let k be an integer such that k ≥ 0. It is necessary and sufficient to use

the following

Inductive Hypothesis: If the maxInRange2 algorithm is executed with an inte-

ger array A with some positive length n as input, and with integer inputs low
and high such that 0 ≤ low ≤ high ≤ n − 1, where high − low = k, then

this execution of the algorithm eventually ends, and the value

max(A[low],A[low+ 1], . . . ,A[high])

is returned as output.

to prove the following

Inductive Claim: If the maxInRange2 algorithm is executed with an integer

array A with some positive length n as input, and with integer inputs low
and high such that 0 ≤ low ≤ high ≤ n − 1, where high − low = k + 1,

then this execution of the algorithm eventually ends, and the value

max(A[low],A[low+ 1], . . . ,A[high])

is returned as output.

With that noted, consider an execution of the maxInRange2 algorithm with an integer

array A as described above as input, along with integer inputs low and high such that

0 ≤ low ≤ high ≤ n− 1, where high − low = k + 1.

Since k ≥ 0, k + 1 ≥ 1 and it follows that low 6= high. The test at line 1 therefore

fails and the execution continues with the step at line 3. Now, since high − low =
k + 1, (high − 1) − low = k ≥ 0 so that 0 ≤ low ≤ (high − 1) ≤ n − 1, with

(high − 1) − low = k, and it follows by the Inductive Hypothesis that the execution of

the maxInRange2 algorithm included in this step eventually halts, with

max(A[low],A[low+ 1], . . . ,A[high− 1])

2

returned as output. One can now see by the inspection of the pseudocode at line 3 that

the current execution also halts after this step, with

max(max(A[low],A[low+ 1],A[high − 1]),A[high])

= max(A[low],A[low+ 1], . . . ,A[high])

returned as output — as needed to establish the Inductive Claim, complete the Inductive

Step, and establish the claim.

As shown above, the standard form of mathematical induction can be used to prove the

correctness of this algorithm. The strong form of mathematical induction could be used

too — and, in this case, a proof using the strong form of mathematical induction would

probably not look very different from the above one: The “Inductive Hypothesis” would

just be a little more complicated.

2. You were next asked to give a bound function for this recursive algorithm and explain,

briefly, why it is correct.

Solution:

The function f(low,high) = high − low is a bound function for the maxInRange2
algorithm.

In order to confirm this, it is sufficient to check that this function satisfies all the properties

included in the definition of a “bound function for a recursive algorithm”:

• This is a well-defined integer-valued total function of (some of) the algorithm’s inputs

(there is no global data being accessed that must be considered and the function’s

value does not depend on the input array A).

• The only way that this algorithm can call itself is recursively is by executing the step

at line 3. Since the input low is not changed and the input high is replaced by

high − 1, the value of the function is certainly decreased by at least one (indeed,

by exactly one) when this algorithm calls itself recursively.

• Suppose that this algorithm is executed with the precondition for the “Maximal El-

ement in Part of an Integer Array” problem satisfied — so that low ≤ high. Sup-

pose, as well, that the value of the function f is less than or equal to zero — so

that low ≥ high as well. Then low = high, so that the test at line 1 is passed

and execution of the algorithm ends after the step at line 2 is executed, without the

algorithm having called itself recursively.

Thus the function f(low,high) = high− low satisfies all the required properties for a

“bound function of a recursive algorithm”, as needed.

Note, as well, that the proof shown above is a proof by induction on the value of this

function.

3

3. You were next asked to give a set of assertions for this recursive algorithm that can be

used to document a proof that it is correct.

Solution: There is certainly more than one correct “solution” for this problem: Informa-

tion can almost always be given in more than one way. With that noted, one solution is

as follows.

• An assertion appearing immediately before line 1 might be as follows:

Assertion:

(a) The precondition for the “Maximal Element in Part of an Array” problem

is satisfied — so that A is an integer input array with some positive

length n, and low and high are integer inputs such that 0 ≤ low ≤

high ≤ n− 1.

• An assertion appearing immediately after line 1 might be as follows:

Assertion:

(a) The precondition for the “Maximal Element in Part of an Array” problem

is satisfied.

(b) low = high.

• An assertion appearing immediately after line 2 might be as follows:

Assertion:

(a) The precondition for the “Maximal Element in Part of an Array” problem

is satisfied.

(b) low = high.

(c) The value

max(A[low],A[low+ 1], . . . ,A[high]) = A[low]

has been returned as output.

• An assertion appearing immediately before line 3 might be as follows.

Assertion:

(a) The precondition for the “Maximal Element in Part of an Array” problem

is satisfied.

(b) high ≥ low+ 1.

4

• An assertion appearing immediately after line 3 might be as follows.

Assertion:

(a) The precondition for the “Maximal Element in Part of an Array” problem

is satisfied.

(b) high ≥ low+ 1.

(c) The value

max(max(A[low],A[low+ 1], . . . ,A[high − 1]),A[high])

= max(A[low],A[low+ 1], . . . ,A[high])

has been returned as output.

• Even though it might seem silly — this point in the pseudocode never actually gets

reached — one might also include the following assertion at the end of the if-then-

else test — that is, between the two “curly braces” at the end of the pseudocode,

just to close things off:

Assertion:

(a) The precondition for the “Maximal Element in Part of an Array” problem

is satisfied.

(b) The value

max(A[low],A[low+ 1], . . . ,A[high])

has been returned as output — so that the postcondition for the “Max-

imal Element in Part of an Array” problem has now been satisfied.

Note: One not-so-good thing about this solution is that it is far too long: The code itself

would be lost within all this in-line documentation. Indeed, it is not clear that very many

(if any) assertions are needed, as in-line documentation, when an algorithm is as simple

as this one. It might better to describe the precondition and postcondition for the problem

being solved and — possibly — provide a reference to a proof of the correctness of the

algorithm, if one has been published.

One somewhat better thing is about this is that — between the identification of a bound

function (which should also be listed in inline documentation) and the above assertions,

a proof of the correctness of the algorithm has been fully documented . Someone

reading the source code does not (necessarily) need to look elsewhere to understand

why the algorithm is correct.

Students proceeding to CPSC 413 and various 500-level courses in computer science

will be introduced to various algorithms whose correctness is not at all obvious. These

might — possibly — serve as better motivation for the kind of in-line documentation being

considered in the last two problems.

5

4. You were next asked to give trace(s) of execution and a recursion tree for this algorithm

when it is executed on an input array A with length 5 such that

A[0] = 8, A[1] = 10, A[2] = 4, A[3] = 24, and A[4] = 3,

and with inputs low = 0 and high = 4.

Solution: Traces of execution for this recursive algorithm, when it is executed on the

above inputs, are as follows. Since the array A is never changed its lengths and entries

will not be repeated.

Trace of Execution #1: The algorithm is executed with the above array A and the values

low = 0 and high = 4 as input.

1. Since low = 0 < 4 = high the test at line 1 fails. Execution of the algorithm

continues with the step at line 3.

2. (a) The algorithm is called recursively with the same input array A, with low = 0, and

with high = 3. This execution terminates with A[3] = 24 returned — see Trace

of Execution #2 for details.

(b) The execution of the algorithm then ends. Since A[3] = 24 > 3 = A[4], the value

A[3] = 24 is returned as output.

Trace of Execution #2: The algorithm is executed with the above array A and the values

low = 0 and high = 3 as input.

1. Since low = 0 < 3 = high the test at line 1 fails. Execution of the algorithm

continues with the step at line 3.

2. (a) The algorithm is called recursively with the same input array A, with low = 0, and

with high = 2. This execution terminates with A[1] = 10 returned — see Trace

of Execution #3 for details.

(b) The execution of the algorithm then ends. Since A[3] = 24 > 10 = A[1], the value

A[3] = 24 is returned as output.

Trace of Execution #3: The algorithm is executed with the above array A and the values

low = 0 and high = 2 as input.

1. Since low = 0 < 2 = high the test at line 1 fails. Execution of the algorithm

continues with the step at line 3.

2. (a) The algorithm is called recursively with the same input array A, with low = 0, and

with high = 1. This execution terminates with A[1] = 10 returned — see Trace

of Execution #4 for details.

(b) The execution of the algorithm then ends. Since A[1] = 10 > 4 = A[2], the value

A[1] = 10 is returned as output.

6

Trace of Execution #4: The algorithm is executed with the above array A and the values

low = 0 and high = 1 as input.

1. Since low = 0 < 1 = high the test at line 1 fails. Execution of the algorithm

continues with the step at line 3.

2. (a) The algorithm is called recursively with the same input array A, with low = 0, and

with high = 0. This execution terminates with A[0] = 8 returned — see Trace of

Execution #5 for details.

(b) The execution of the algorithm then ends. Since A[1] = 10 > 8 = A[0], the value

A[1] = 10 is returned as output.

Trace of Execution #5: The algorithm is executed with the above array A and the values

low = 0 and high = 0 as input.

1. Since low = 0 = high the test at line 1 passes. Execution of the algorithm continues

with the step at line 2.

2. The value A[0] = 8 is then returned as output.

A corresponding recursion tree is as follows.

Execution #1

low = 0

high = 4

Execution #2

low = 0

high = 3

Execution #3

low = 0

high = 2

Execution #4

low = 0

high = 1

Execution #5

low = 0

high = 0

One might wonder why these might be of interest. Traces of executions can be surpris-

ingly useful for code inspection and debugging. Recursion trees can be valuable for the

analysis of various recursive algorithms.

7

