
Reading #2

Proving the Correctness of a Simple Recursive Algorithm

How Do We Specify a Computational Problem?

Definition: A specification of requirements for a computational problem (something that

we want to solve using a computer program) includes the following:

• Precondition: A condition (property) that is either true or false, and that is satisfied

by any well formed instance (i.e., set of inputs) for this problem.

• Postcondition: A condition that be satisfied if this problem is solved.

The postcondition might include relationships between inputs as well as outputs — as well

as initial and final values of global data that are accessed and modified.

Examples

Consider the problem of computing the largest element of an integer array A, with positive

length n, and whose elements are A[0], A[1], . . . , A[n − 1]. This problem can be specified as

follows.

Maximal Element of Integer Array

Precondition: An integer array A, with positive length n, is given as input.

Postcondition: The largest element in the set

{A[0], A[1], . . . , A[n − 1]}

is returned as output.

1



A related problem is to compute the largest element in a part of an integer array:

Maximal Element in Part of an Integer Array

Precondition: An integer array A, with positive length n, and integers low and high such

that 0 ≤ low ≤ high ≤ n− 1, are given as input.

Postcondition: The largest element in the set

{A[low], A[low+ 1], . . . , A[high]}

is returned as output.

How Do We Specify an Algorithm?

According to the Wikipedia page about them, an algorithm is “an effective method expressed

as a finite list of well-defined instructions for calculating a function.” If you replace the last few

words, “calculating a function,” with the words “solving a computational problem” instead, then

this definition will serve for these notes.

Algorithms can be presented in a variety of ways, including using (clear and precise) English,

using pseudocode, or using executable code.

Example

An algorithm that solves the “Maximal Element in Part of an Integer Array” problem is as follows.

It is described using pseudocode.

integer maxInRange (integer[] A, integer low, integer high) {

1. if (low == high) {

2. return A[low]

} else {

3. integer mid := floor((low + high)/2)

4. return max(maxInRange(A, low, mid), maxInRange(A, mid + 1, high))

}

}

Correctness

Definition: An algorithm, for a given computational problem, is correct if the following property

is satisfied: Whenever the problem’s precondition is satisfied and the algorithm is executed,

then the execution of the algorithm eventually ends, and the problem’s postcondition is satisfied

when this happens.

2



No changes to the system state, that are not documented in the precondition and postcon-

dition, should be caused by the execution of this algorithm if the precondition holds when the

execution begins. Thus the only undocumented variables whose values might change should

be local variables — which did not exist before execution began and do not exist again after

execution ends.

Note: This does not say (or promise) anything about what happens if the problem’s precondi-

tion is not satisfied and the algorithm is executed.

A Proof of the Correctness of an Algorithm

The following is a proof that the maxInRange algorithm is correct — that is, it correctly solves

the “Maximal Element in Part of an Integer Array” problem.

• It is assumed (or used as an axiom) here that the floor function always receives a real

number x as input and returns, as output, the largest integer that is less than or equal

to x.

• It is also assumed that the max function always receives a pair of integers, a and b as

input, and returns as output whichever of a or b is larger.

Theorem: Suppose that A is an integer array with positive length n, low and high are integers

such that 0 ≤ low ≤ high ≤ n − 1, and that the algorithm maxInRange is executed, given A,

low and high as inputs.

Then this execution of the algorithm ends, and the largest value in the set

{A[low], A[low+ 1], . . . , A[high]}

is returned as output when this happens.

Proof: This will be proved by induction on high− low. The strong form of mathematical induc-

tion will be used, and the (single) case that high− low = 0 will be considered in the basis.

Basis: Suppose that high− low = 0, Then

0 ≤ low = high ≤ n− 1.

In this case, when the execution of the algorithm begins, the test at line 1 is successful, so that

step 2 is then executed. The execution of the algorithm then ends and, since

{A[low], A[low+ 1], . . . , A[high]} = {A[low]}

in this case, the largest element of this set is then returned as output, as required.

3



Inductive Step: Let k be an integer such that k ≥ 0. It is necessary and sufficient to use the

following inductive hypothesis to prove the following inductive claim.

Inductive Hypothesis: Suppose that A is an integer array with positive length n,

low and high are integers such that 0 ≤ low ≤ high ≤ n − 1 and, furthermore,

that 0 ≤ high − low ≤ k. If the algorithm maxInRange is executed given A, low

and high as inputs then this execution of the algorithm ends, and the largest value

in the set

{A[low], A[low+ 1], . . . , A[high]}

is returned as output when this happens.

Inductive Claim: Suppose that A is an integer array with positive length n, low

and high are integers such that 0 ≤ low ≤ high ≤ n − 1 and, furthermore, that

0 ≤ high − low = k + 1. If the algorithm maxInRange is executed given A, low

and high as inputs then this execution of the algorithm ends, and the largest value

in the set

{A[low], A[low+ 1], . . . , A[high]}

is returned as output when this happens.

With that noted, let us suppose that

• A is an integer array with positive length n as input,

• low and high are integers such that 0 ≤ low ≤ high ≤ n − 1 and, furthermore,

high− low = k + 1.

Suppose that the algorithm maxInRange is executed given A, low and high as input.

• In this case, low > high so that the test at line 1 fails and execution of the algorithm

continues with line 3.

• Since high = low+ k + 1,

mid =

⌊

2low+ k + 1

2

⌋

= low+

⌊

k + 1

2

⌋

. (1)

The integer k must either be even or odd.

• If k is even then k = 2h for some integer h ≥ 0.

• In this case mid = low + h, so that 0 ≤ low ≤ mid ≤ high ≤ n − 1 and, furthermore,

0 ≤ mid− low = h ≤ k.

4



• It follows by the inductive hypothesis that the execution of the algorithm maxInRange with

inputs A, low and mid at line 4 eventually halts, with the largest element of the set

{A[low], A[low = 1], . . . , A[mid]}

returned as output.

• Since k = 2h, mid+1 = low+h+1 and high = low+2h+1, 0 ≤ high− (mid+1) =
h ≤ k as well. It follows by the inductive hypothesis that the execution of the algorithm

maxInRange with inputs A, mid + 1 and high at line 4 also eventually halts, with the

largest element of the set

{A[mid + 1], A[mid + 2], . . . , A[high]}

returned as output.

• One can see, by inspection of the code at line 4, that this execution of the algorithm also

ends and that the largest element in the set

{A[low], A[low+ 1], . . . , A[high]}

is returned as output in this case — as required.

• On the other hand, if k is odd then k = 2h + 1 for some integer h ≥ 0 In this case,

mid = h+ 1.

• Exercise: Modify the argument for the case that k is even, as needed, to prove that this

execution of the algorithm would also halt, with the largest element of the set

{A[low], A[low+ 1], . . . , A[high]}

returned as output in this case too.

• Since both cases have been considered, it now follows that an execution of the algorithm

with inputs A, low and high such that 0 ≤ low ≤ high ≤ n − 1 and high − lowk + 1
always halts, with the largest element in the set

A[low], A[low+ 1], . . . , A[high]}

being returned as output — as needed to establish the inductive claim and complete the

inductive step.

• The result now follows by induction on high− low.

5



Things To Notice About This Proof

• This makes use of a recognized proof technique — mathematical induction — specifi-

cally, the strong form of mathematical induction, using induction on high− low.

• This is written in the style used in the previous set of notes — and avoids the mistakes

and shortcuts discussed there.

• This traces the execution of the algorithm on various kinds of inputs in order to estab-

lish the basis and complete the inductive step.

Checking for Undocumented Side-Effects

One can see by inspection of the code of the recursive algorithm maxInRange that

• The only inputs accessed are the inputs A, low and high that are mentioned in the

“Maximal Element in Part of an Integer Array” problem’s precondition, and no global data

is accessed.

• The algorithm does not modify any input or global data and the only output returned is

the value mentioned in the above problem’s postcondition.

Thus it has no undocumented side-effects and really can be considered to be “correct.”

Correctness of Algorithms: Questions and Answers

At this point some people have questions like the following, or conclusions about this material,

based on assumed answers:

1. Question: Why, on earth, should anyone care about the correctness of an algorithm,

or computer program, anyway?

Answer: There are certainly situations where this kind of analysis of an algorithm is in-

feasible or unrealistic. For example, any problem in the domain of artificial intelligence

cannot be handled in this way — the problems are too big.

On the other hand, problems that are safety-critical should (at least arguably) be han-

dled in this way. Widely used software like library software — the kind of software found

in the “Java Collections Framework” or the “Standard Template Library” should (at least

arguably) be treated in this way too — because so many people make use of it in ways

that cannot be anticipated or controlled.

2. Question: Why can we not rely on testing and debugging instead of all this mathe-

matical stuff?

Answer: These approaches are actually complementary rather than competitive: It is

a good idea to know about and be able to apply both approaches:

6



• In this course we will generally be considering algorithms given as pseudocode

rather than executable code. Dynamic testing allows working code to be run and

checked — making it more effective in the identification of coding errors as well as

the effects of assumptions that tend to get made in proofs of correctness — like

“integer arithmetic is exact”.

• On the other hand, testing can almost never be exhaustive or complete: There

will virtually always be missed situations or cases, not considered in test suites,

that will only be noticed years or even decades after software — again, especially

software like library software — is in widespread use. Understanding a proof of the

correctness of an algorithm can be helpful for more effective and extensive test

design and more effective debugging.

3. Question: Why is it important that there are no undocumented side-effects when the

algorithm is executed?

Answer: Once again, library software should be considered.

• This will be used in larger systems in unpredictable and uncontrollable ways. Un-

documented side-effects will, on occasion, cause some of these larger systems to

fail.

If this happens, it might be difficult or impossible to figure out why.

4. Question: Oh, come on, now. It is obvious that the algorithm shown here is correct.

Why is such a trivial example being presented?

Answer: The decision to do this can be explained on both academic and workplace-

related grounds.

• Academic Justification: This involves the application of material from an indirect

prerequisite in discrete mathematics — MATH 271 or 273. Some students passed

this prerequisite but did not excel in it. Others have also forgot its contents. The

application of this material to problems in computer science might not have been

discussed very much (if at all).

Starting with something simple and small — that does not provide additional sources

of confusion — makes sense, for anyone trying to help someone to try to learn to

do this stuff, under these circumstances.

• Workplace Justification: The software library scenario is relevant again: You

are contributing to something that others will use in a way that you can neither

predict nor control. You cannot anticipate the way your work will be used. Nor will

you necessarily be able to change it later. You are adding to bedrock that others

will depend on, when you are not around to explain or repair.

Doing this kind of thing gradually, and from the bottom up, makes sense, in support

of what you are to provide to other software professionals.

7



Documenting Correctness

Helpful inline documentation that you should consider including at the beginning of any pro-

gram that implements a nontrivial algorithm includes

• the precondition and postcondition for the problem that can be solved using this algo-

rithm;

• a reference to a readable proof of the correctness of this algorithm, if one has been

published;

• bounds on the time and space required for the execution of this algorithm on a given

input, if these have also been proved.

Additional inline documentation, described below, also helps a reader of the code to see why

it is correct.

Bound Functions for Recursive Algorithms

Definition: A bound function for a recursive algorithm is a mathematical function that

is defined on the inputs and global data that are accessed and modified when the recursive

algorithm is executed — specifically, on those inputs and global data satisfying the precondition

for the problem being solved — and that also satisfies the following properties — assuming, as

usual, that the problem’s precondition is satisfied when the algorithm is executed.

1. This is an integer-valued function.

2. Whenever the algorithm is applied recursively, the value of the function has been de-

creased by at least one.

3. If the function’s value is less than or equal to zero when the algorithm is applied then the

algorithm does not call itself recursively during this execution.

Example: Consider the recursive algorithm maxInRange, and the function

f(A, low, high) = high− low.

1. Since low and high are both integer inputs, this is certainly an integer-valued function.

2. As noted in the proof of the correctness of this algorithm, the value of this function is

decreased by at least one every time the algorithm is replied recursively — see the

“inductive step” in the above proof of correctness of the algorithm for details.

8



3. As noted in the proof of correctness of this algorithm, low ≤ high whenever this algo-

rithm is recursively applied. It follows that is only possible that

f(A, low, high) = high− low ≤ 0

under these conditions if high− low = 0, that is, low = high.

In this case, the test at line 1 passes, execution continues with line 2 and execution ends

immediately after that, without the algorithm having called itself recursively.

What To Notice About This Argument:

• A bound function was identified — and established, just by checking that all of the

properties listed in the definition of a “bound function for a recursive algorithm” were

satisfied.

• This only required an examination of the pseudocode of the algorithm. Establishing a

bound function for a recursive algorithm will often (but not always) be as easy as this.

Why are Bound Functions Useful?

• It is often possible to prove properties of recursive algorithms, using mathematical induc-

tion — specifically, using induction on the initial value of the bound function.

Indeed, this is how the correctness of recursive algorithms will generally be proved.

Assertions

Definition: An assertion is...

• a boolean condition (or “predicate”)

• involving an algorithm’s inputs, local variables, outputs, and (possibly) global data...

• that is assumed to be satisfied at a specific point in a computation, namely, either

immediately before the execution of the algorithm begins, or immediately before or after

a specific instruction in the algorithm has been executed — assuming, again, that the

problem’s precondition was satisfied when execution began.

Why are Assertions Useful?

• Assertions can be used to document significant parts of the proof of correctness of the

algorithm. If they are reasonably complete, then a reader may see the proof of correct-

ness just by reading the bound function and assertions!

• Java, C++, and some other languages include statements with names like assert that

allow assertions to be actively checked , when programs are being run during testing.

This can make it much easier to find errors in software than otherwise — because this

makes the code self-checking.

9



Assertions for the Example Algorithm

• Assertions only need to be satisfied during executions when the precondition is initially

satisfied — but they must be satisfied if this is the case. Thus an assertion including the

following

1. A is an input integer array with positive length n.

2. low and high are integer inputs such that 0 ≤ low ≤ high ≤ n− 1.

can be listed immediately before line 1 of the maxInRange algorithm.

• The assertion that can be used immediately after this line should reflect the fact that this

point is only reached if low = high as well:

1. A is an input integer array with positive length n.

2. low and high are integer inputs such that 0 ≤ low = high ≤ n− 1.

• The assertion that can be used immediately after step 2 should reflect the fact that the

output has now be returned in this case:

1. A is an input integer array with positive length n.

2. low and high are integer inputs such that 0 ≤ low = high ≤ n− 1.

3. The value

A[low] = max(A[low], A[low+1], . . . , A[high])

has been returned as output.

• Assertions for later points in the (pseudo)code should also reflect what is known when

each point is reached.

• A version of the algorithm that includes all such assertions is available as a separate

document.

Discovering and Checking Correctness

Ideally...

• The designer of an algorithm should supply a proof of its correctness.

• Other people wishing to use this algorithm should also have access to this proof.

With that noted, the following can be helpful if you wish to do any of the following:

• Discover a proof of correctness of an algorithm, if one has not been supplied.

• Understand a proof of correctness of an algorithm, if this is not clear.

• Discover whether an implementation of an algorithm might be incorrect, by checking it

by hand.

10



Traces of Execution

A trace of execution of an algorithm, on an input, is a listing of the statements (in the algo-

rithm) that are performed, when the algorithm is executed on this input, along with a description

of the effects of these statements.

Complication: If the algorithm is recursive then one execution of the algorithm will often in-

clude one or more other executions of the same algorithm on different inputs.

One way to deal with this when providing a trace of execution — that will be used in the example

to follow — is

• to number (or otherwise label) the traces of all the executions that are included, and

• to give a separate trace of execution for each, providing cross-references between traces

as needed.

Tracing an Execution of the Example Algorithm on a Particular Input

In the following example A is an integer array with length 5, in all executions such that

• A[0] = 8,

• A[1] = 10,

• A[2] = 4,

• A[3] = 25, and

• A[4] = 3.

In the initial execution low = 0 and high = 4, so that the largest integer in the entire array, 25,

should eventually be returned as output.

Execution #1: The integers low = 0 and high = 4 are received as the additional inputs.

1. The test at step 1 is executed. Since low 6= high this test fails, so that the execution of

the algorithm continues with step 3.

2. At step 3, mid is set to have value ⌊(0 + 4)/2⌋ = 2.

3. Step 4 is executed:

(a) The algorithm is recursively executed with the same input integer array A and with

low = 0 and high = 2; see the trace of “Execution #2” for details. The value

10 = max(A[0], A[1], A[2]) is returned.

(b) The algorithm is recursively executed with the same input integer array A and with

low = 3 and high = 4; see the trace of “Execution #7” for details. The value

25 = max(A[3], A[4]) is returned.

(c) The value 25 = max(10, 25) = max(A[0], A[1], A[2], A[3], A[4]) is returned as output.

11



Execution #2: The integers low = 0 and high = 2 are received as the additional inputs.

1. The test at step 1 is executed. Since low 6= high this test fails, so that the execution of

the algorithm continues with step 3.

2. At step 3, mid is set to have value ⌊(0 + 2)/2⌋ = 1.

3. Step 4 is executed:

(a) The algorithm is recursively executed with the same input array A and with low =
0 and high = 1; see the trace of “Execution #3” for details. The value 10 =
max(A[0], A[1]) is returned as output.

(b) The algorithm is recursively executed with the same input integer array A and with

low = 2 and high = 2; see the trace of “Execution #6” for details. The value

A[2] = 4 is returned as output.

(c) The value 10 = max(10, 4) = max(A[0], A[1], A[2]) is returned as output.

Execution #3: The integers low = 0 and high = 1 are received as the additional inputs.

1. The test at step 1 is executed. Since low 6= high this test fails, so that the execution of

the algorithm continues with step 3.

2. At step 3, mid is set to have value ⌊(0 + 1)/2⌋ = 0.

3. Step 4 is executed:

(a) The algorithm is recursively executed with the same input integer array A and with

low = 0 and high = 0; see the trace of “Execution #4” for details. The value

A[0] = 8 is returned.

(b) The algorithm is recursively executed with the same input integer array A and with

low = 1 and high = 1; see the trace of “Execution #5” for details. The value

A[1] = 10 is returned.

(c) The value 10 = max(8, 10) = max(A[0], A[1]) is returned as output.

Execution #4: The integers low = 0 and high = 0 are received as the additional inputs.

1. The test at step 1 is executed. Since low = high this test succeeds, so that the execution

of the algorithm continues with step 2.

2. The value A[low] = A[0] = 8 is returned as output.

Execution #5: The integers low = 1 and high = 1 are received as the additional inputs.

1. The test at step 1 is executed. Since low = high this test succeeds, so that the execution

of the algorithm continues with step 2.

2. The value A[low] = A[1] = 10 is returned as output.

12



Execution #6: The integers low = 2 and high = 2 are received as the additional inputs.

1. The test at step 1 is executed. Since low = high this test succeeds, so that the execution

of the algorithm continues with step 2.

2. The value A[low] = A[2] = 4 is returned as output.

Execution #7: The integers low = 3 and high = 4 are received as the additional inputs.

1. The test at step 1 is executed. Since low 6= high this test fails, so that the execution of

the algorithm continues with step 3.

2. At step 3, mid is set to have value ⌊(3 + 4)⌋ = 3.

3. Step 4 is executed:

(a) The algorithm is recursively executed with the same input integer array A and with

low = 3 and high = 3; see the trace of “Execution #8” for details. The value

A[3] = 25 is returned.

(b) The algorithm is recursively executed with the same input integer array A and with

low = 4 and high = 4; see the trace of “Execution #9” for details. The value

A[4] = 3 is returned.

(c) The value 25 = max(25, 3) = max(A[3], A[4]) is returned as output.

Execution #8: The integers low = 3 and high = 3 are received as the additional inputs.

1. The test at step 1 is executed. Since low = high this test succeeds, so that the execution

of the algorithm continues with step 2.

2. The value A[low] = A[3] = 25 is returned as output.

Execution #9: The integers low = 4 and high = 4 are received as the additional inputs.

1. The test at step 1 is executed. Since low = high this test succeeds, so that the execution

of the algorithm continues with step 2.

2. The value A[low] = A[4] = 3 is returned as output.

Recursion Trees

A recursion tree is a picture (actually, a “tree”) that corresponds to an execution of a recursive

algorithm on a fixed input and shows the relationship between all the different executions that

get made along the way:

• The “root” of this tree corresponds to the original execution of the algorithm.

• If the algorithm calls itself recursively on an execution then the node for this execution

has a “child” corresponding to each of the recursive calls that it makes.

13



• If the algorithm does not call itself recursively then the node for this execution does not

have any children at all — that is, it is a “leaf” in the tree.

The recursion tree for the execution of the algorithm maxInRange on the inputs shown in the

above trace of execution is shown below. The input array A is not shown in order to simplify the

picture.

Execution #1:

low = 0

high = 4

Execution #2:

low = 0

high = 2

Execution #3:

low = 0

high = 1

Execution #4:

low = 0

high = 0

Execution #5:

low = 1

high = 1

Execution #6:

low = 2

high = 2

Execution #7:

low = 3

high = 4

Execution #8:

low = 3

high = 3

Execution #9:

low = 4

high = 4

Recursion Trees: Why are They Useful?

• Recursion trees help to make sense of all the different “traces of execution” that are

needed when one wants to consider the execution of a recursive algorithm on a particular

input.

• These can also be very helpful when you are trying to prove interesting things about the

running times and storage requirements for recursive algorithms.

14


