
Reading #1

Review of Proofs and Mathematical Induction

Mathematical Proofs

What is a Mathematical Proof?

In mathematics, and computer science, a proof is formal argument, establishing a claim. This

kind of argument proceeds line-by-line (or, from one deduction to another) using

• Axioms: Properties that are understood — and universally agreed — to be correct.

• Theorems: Other results that have been proved already.

• Proof Techniques: Formal methods that can be used, with results that have been

proved already, to prove new ones.

These do not necessarily need to be written in a formal way — but it should always be possible

to identify the axioms, theorems, and proof techniques that have been used in a proof.

Examples of Axioms

Axioms that you should already know about, and that can be used when writing proofs, include

the following.

• Properties of integers, and other sets and structures, that you learned about in MATH 271.

Example: Commutativity of Integer Addition: For all integers a and b, a+ b = b+ a.

• Properties of statements in programming languages that you learned about in the pro-

gramming prerequisites for this course.

Example: If x is an integer variable and exprn is an integer expression, then (in Java)

the assignment statement

x = exprn

sets the value of the variable x to be the current value of exprn.
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Theorems and Proof Techniques

You almost certainly learned about some theorems in MATH 271. The list of theorems you

may use grows every time you see a valid mathematical proof!

So, you will see one more theorem that you may use, later on, by the end of this set of notes.

Examples of proof techniques that you should already know about include

• Proof by contradiction.

• Proof of an existential claim by giving an example.

• Mathematical induction.

Negative Example: This is Not a Proof

Theorem.
n
∑

i=0

(2i + 1) = (n+ 1)2

for every integer n ≥ 0.

Proof. (Which is Actually Not One, at All): If n = 0 then

n
∑

i=0

(2i+ 1) = (2× 0 + 1) = 1 = 12 = (n+ 1)2.

If n = 1 then

n
∑

i=0

(2i + 1) = (2× 0 + 1) = (2× 1 + 1) = 1 + 3 = 4 = 22 = (n+ 1)2.

Similarly, if n = 2 then

n
∑

i=0

(2i + 1) = 1 + 3 + 5 = 9 = 32 = (n+ 1)2,

and so on.

Why This is Not a Proof: It is not using a valid proof technique! When you are proving a

property that is supposed to hold for all the elements of an infinite set, you can never do that

just by checking whether the property holds for a finite subset of it.
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Why are Mathematical Proofs Important?

Mathematical proofs are important because they are reliable: They can be understood and

trusted — when other kinds of arguments cannot be.

How You Can Tell Whether Something is a Mathematical Proof:

You should be able to identify the axioms, theorems and proof techniques that were used to

establish all the claims in the argument.

If you cannot do that then there is a pretty good chance that the argument is not a mathematical

proof at all!

More About Mathematical Proofs

Finding mathematical proofs is something of an art : Professional mathematicians and com-

puter scientists work for years to discover proofs of claims (sometimes including claims that

are not actually true)... but

Writing a mathematical proof down, once you have discovered it is a skill that can be taught

and learned... but requires practice.

What To Do If You Get Stuck...

Suppose you are asked to write a proof on a test and do not know how to do it or get stuck in

the middle...

• A Good Thing To Do: Tell the marker what you do know about how to prove it: Mention

the proof technique that you believe should be used, theorems and axioms you know

that seem to be relevant, and tell me far you did get when you tried to use these.

• What NOT To Do: Forget or ignore everything you have learned about mathematical

proofs (and the material introduced in this course) and give the marker an argument like

the “negative example” from earlier in those notes.

Mathematical Induction

Mathematical induction is a proof technique (or pair of related ones) that you already learned

about in MATH 271 and that is extremely useful for proving the correctness and efficiency of

algorithms and data structures.

In CPSC 331 you would initially have seen the instructor present proofs that use mathematical

induction for this.

You would then (occasionally) have been required to write your own proofs in that course.

You will be required to do much more of this in CPSC 413 and later theory courses that you

choose to take.
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Principle of Mathematical Induction: Standard Form

Let P (n) be a property that is defined for all integers n, and let α be a fixed integer. Suppose

the following two statements are true:

1. P (α) is true.

2. For all integers k ≥ α, if P (k) is true then P (k + 1) is true.

Then P (n) is true for every integer n ≥ α.

How To Apply This

One way to prove that P (n) is true for every integer n ≥ α is to do the following.

1. Basis: Show that P (α) is true.

2. Inductive Step: Let k be an arbitrarily chosen integer such that k ≥ α. Assuming only

the

Inductive Hypothesis: P (k) is true,

prove the

Inductive Claim: P (k + 1) is true.

3. Conclude that P (n) is true for every integer n ≥ α.

Example Proof: A Correct Proof of the Previous Theorem

Once again, consider the problem of proving that

n
∑

i=0

(2i + 1) = (n+ 1)2

for every integer n ≥ 0.

One can apply the above method to prove this by setting...

• P (k) to be the property that

k
∑

i=0

(2i + 1) = (k + 1)2

• and setting α to be 0.
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A correct proof of the previous theorem, using this proof technique, as follows.

Proof. The claim will be proved using mathematical induction on n. The standard form of

mathematical induction will be used.

Basis: If k = 0 then
k

∑

i=0

(2i + 1) =

0
∑

i=0

(2i+ 1) = 1.

Since (k + 1)2 = 12 = 1 in this case, as well, it follows that

k
∑

i=0

(2i+ 1) = (k + 1)2

when k = 0.

Inductive Step: Let k be an arbitrarily chosen integer such that k ≥ 0. It is necessary and

sufficient to use the following

Inductive Hypothesis:

k
∑

i=0

(2i+ 1) = (k + 1)2

(and nothing more) to prove the following

Inductive Claim:

k+1
∑

i=0

(2i+ 1) = ((k + 1) + 1)2.

Note that

k+1
∑

i=0

(2i+ 1) =
k

∑

i=0

(2i+ 1) + (2k + 3)

= (k + 1)2 + 2k + 3 (by the inductive hypothesis)

= k2 + 2k + 1 + 2k + 3

= k2 + 4k + 4

= (k + 2)2 = ((k + 1) + 1)2

as required to complete the inductive step. It now follows that

n
∑

i=0

(2i + 1) = (n+ 1)2

for every integer n ≥ 0.
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A Tedious (But Somewhat Important) Exercise

Perhaps you are wondering whether this is a mathematical proof at all!

Tedious Exercise: Go to your MATH 271 textbook and identify all of the properties of integers,

introduced in that course, that are axioms that were used in the above proof — along with any

theorems proved in that course that have been used here too.

Indeed, this really would be tedious.... but it is what you would need to do to be convinced that

this really is a mathematical proof.

Principle of Mathematical Induction: Strong Form

Once again, let P (n) be a property that is defined for all integers n. Let α and β be fixed

integers such that α ≤ β. Suppose that the following two statements are true.

1. P (α), P (α + 1), P (α + 2), . . . , P (β) are all true.

2. For every integer k ≥ β, if P (i) is true for every integer i such that α ≤ i ≤ k, then

P (k + 1) is true as well.

Then P (n) is true for every integer n ≥ α.

How To Apply This

Another way to prove that P (n) is true for every integer n ≥ α is to do the following.

1. Choice of Breakpoint: Choose an integer β such that β ≥ α.

2. Basis: Prove that P (α), P (α + 1), P (α + 2), . . . , P (β) are all true.

3. Inductive Step: Let k be an arbitrarily chosen integer such that k ≥ β. Assuming only

the

Inductive Hypothesis: P (i) is true for every integer i such that α ≤ i ≤ k

prove the

Inductive Claim: P (k + 1) is true.

4. Conclude that P (n) is true for every integer n ≥ α.
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Example Proof

Theorem. Suppose that g0, g1, g2, . . . are integers such that (for a nonnegative integer i)

gi =











12 if i = 0,

29 if i = 1,

5 · gi−1 − 6 · gi−2 if i ≥ 2.

Then gn = 5 · 3n + 7 · 2n for every integer n ≥ 0.

How To Prove This: One can apply the above method by setting...

• P (k) to be the property that if k ≥ 0 then gk = 5 · 3k + 7 · 2k ,

• setting α to be 0,

• and setting β to be 1, so that the cases k = 0 and k = 1 will both be considered in the

basis.

Proof. The result will be proved using mathematical induction on k. The strong form of math-

ematical induction will be used, and the cases k = 0 and k = 1 will both be considered in the

basis.

Basis: If k = 0 then gk = g0 = 12 as defined above, and

5 · 3k + 7 · 2k = 5 · 1 + 7 · 1 = 12

as well, so that gk = 5 · 3k + 7 · 2k in this case.

If k = 1 then gk = g1 = 29 as defined above, and

5 · 3k + 7 · 2k = 5 · 3 + 7 · 2 = 15 + 14 = 29

as well, so that gk = 5 · 3k + 7 · 2k once again.

Inductive Step: Let k be an arbitrarily chosen integer such that k ≥ 1. It is necessary and

sufficient to use the following

Inductive Hypothesis: gi = 5 · 3i + 7 · 2i for every integer i such that 0 ≤ i ≤ k

(and nothing more) to prove the following

Inductive Claim: gk+1 = 5 · 3k+1 + 7 · 2k+1.
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Since k ≥ 1, k + 1 ≥ 2 and k − 1 and k are both integers between 0 and k, so that

gk+1 = 5 · gk − 6 · gk−1 (since k + 1 ≥ 2)

= 5 · (5 · 3k + 7 · 2k)− 6 · (5 · 3k−1 + 7 · 2k−1) (by the inductive hypothesis)

= 5 · (5 · 3− 6) · 3k−1 + 7 · (5 · 2− 6) · 2k−1 (reordering terms)

= 5 · 32 · 3k−1 + 7 · 22 · 2k−1

= 5 · 3k+1 + 7 · 2k+1

as required to complete the inductive step.

It now follows that gn = 5 · 3n + 7 · 2n for every integer n ≥ 0.

Which Form of “Induction” Should I Use?

You might be wondering about a few things by now...

• Question: Why did I use “standard” induction for the first example, but “strong” induction

for the second?

• Answer: I use standard induction whenever I can, because it is a simpler proof tech-

nique. The second proof would break down if standard induction was used instead of

strong induction, because you would need to assume something that is not part of the

“inductive hypothesis,” during the inductive step (and this is not allowed). Try it and see!

• Note: It would not be a “mistake” to use strong induction for the first example too! You

certainly could prove the claim by doing this! However, your proof would probably be

more complicated than necessary if you did this.

Choice of Breakpoint

• Question: Can other values be chosen for the “breakpoint” β in the example proof (for

strong induction)?

• Answer: Yes, other values can be used. You can choose β to be 0 instead of 1. However,

this complicates the inductive step because the case that k = 0 (and k + 1 = 1) then

needs to be handled as a special case — the argument needed here is different from

the one that can be used when k ≥ 1. This might make it a bit harder to make the proof

simple and easy to read and understand.

One can choose β to be 2 (or larger) as well... but, since the argument needed to

establish the result is the same, whenever, k ≥ 1, this will probably result in a proof that

is longer and more repetitious than it needs to be.

Sometimes you will only discover the “best” choice for β after you’ve picked a different

value and have started to write a proof...

8



What is (Not) Important Here?

• Question: Do my proofs need to look like this?

• Answer: Yes... and no.

Yes, you must be using mathematical induction correctly. Your proofs must be based on

the “principles” of induction (and descriptions of how to apply these) that are in these

notes.

No, you do not have to follow the instructor’s writing style, or anyone else’s. Everybody

writes differently. That’s OK, as long as your writing is clear and correct.

A Mistake To Watch For: Missed Cases

It is easy to miss a case in a proof by induction — especially when strong induction is being

used. For example, one might forget that the case “k = 1” has to be handled separately in the

example proof (for strong induction) that is given above.

Your proof is incomplete (and you have certainly not established the desired result) if this

happens.

Indeed, this is — probably — the mistake that students make, most often, when they are trying

to prove something using mathematical induction.

Recommendation: Take the time to work through the first few examples by hand. If you are

proving that some property P (n) is satisfied whenever n ≥ α, take the time to check that your

proof really does explain why P (α), P (α + 1), P (α + 2) and P (α + 3) are all true. If you’ve

missed a case then — more often than not — this is all that you will need to do in order to

discover that!

Another Mistake: Forgetting What You Are Proving

Here is an extreme (and somewhat) silly example of this: Suppose that you modified the

second “example proof” in the following way:

• In the basis, you proved that gi ≤ 5 · 3i + 7 · 2i when i = 0 and i = 1.

• For the inductive step you assumed the

Inductive Hypothesis: gi = 5 · 3i + 7 · 2i for every integer i such that 0 ≤ i ≤ k

in order to try to establish an

Inductive Claim: gk+1 ≥ 5 · 3k+1 + 7 · 2k+1.
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Question: So, what is the problem here? Why has practically nothing actually been proved?

Answer: The mistake is that there is no single property, “P (n),” that is considered in the basis,

used to produce the inductive hypothesis, and used to form the inductive claim too. Three

different properties got considered instead... so that the “proof” would not, really, establish any

of them.

Students make this mistake more often than you might think — especially on tests!

Recommendation: Write down

• Precisely what you need to prove in the basis for your proof,

• Precisely what you can assume as the inductive hypothesis for your inductive step, and

• Precisely what the inductive claim is that you need to establish in the inductive step

as soon as you can! Check that they are consistent and refer back to them, as needed, as you

continue to develop your proof.

Yet Another Mistake: Avoiding Mathematical Induction When You Need It

Let’s consider the second problem, once again, and suppose you were asked to give a proof

of the claim on a test.

It is possible (even likely) that quite a few students would give an answer that confirms that

gn = 5 · 3n + 7 · 2n when 0 ≤ n ≤ 4 and then write something like “dot, dot, dot... the same

argument holds for larger n.”

If the question is worth ten marks then I would probably award a single mark (or, maybe, no

marks at all!) for this kind of answer.

Sometimes, properties hold for small (nonnegative) integers — even for lots of them — but do

not hold for larger ones.

And... sometimes... the reason why I am choosing a problem is to try to make sure that you

know how to use a specific proof technique, namely, mathematical induction. Giving me an an-

swer that avoids this technique will not, in any way at all, show me that you know how to do this.

A Related Problem: I have noticed, in the past, that students who “avoid mathematical in-

duction like the plague” tend to “avoid recursive algorithms and programs like the plague” as

well. Mathematical induction and recursion are both important for CPSC 413 and you will,

occasionally, be required to understand and use both.

Another Mistake: Using Mathematical Induction When It is Not Needed

On the other hand, students sometimes use mathematical induction when it is not needed

at all: Sometimes it is possible to prove that a property “P (n)” holds for all integers n ≥ α
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by giving a much simpler argument (possibly, just by checking and repeating a definition or

applying another result that you already know).

This has probably happened if you never actually use the inductive hypothesis, in the inductive

step, when you are proving the inductive claim.

More Mistakes To Avoid in Theory Courses

Please try not to do the following on assignments or tests in a theory course:

• Leave Half The Answer Out: This happens a lot. Markers cannot read minds and will

(or should) not give you credit for information that you failed to include. Sometimes so

much information is missing that it is impossible to make sense of the information that

has been given.

• Use Technical Terms (or Notation), Meaning Different Things, Interchangeably: For

example (related to CPSC 313), functions, strings and languages are very differ-

ent things. So are languages and Turing machines. I recently finished marking a

CPSC 313 exam and read many, many answers that made no sense at all, because

these technical terms were being mixed up.

• Give me an Example when a Proof of a General Result is Required.

• Give me an Essay, like Something You would Give in an English Course — Probably

Describing Intuition or an Opinion — when a Mathematical Proof is Required.

As a “theory proof” I take a very dim view of these things and rarely give more than one or

two marks (if the question is out of ten or twenty) for them — if I give any marks, at all.

No, I do not care how long this kind of answer is, or how much time you apparently spent

providing it.

By giving this kind of answer you are telling me that you do not know the proof that is required

and, furthermore are unwilling or unable to try to provide it.

Finally, please do not. . .

• Give Me a Picture, and Almost Nothing More, When a Proof is Required.

• Give Me An Answer That Does Not Include Any Written Words at All: Sequences of

apparently unrelated equations or other mathematical expressions are generally, unclear,

difficult to understand, and are always unacceptable.

• Make Up Your Own Notation or Technical Terms and Use Them without Defining Them.

• Find Other Ways to Tell Me That You Do Not Know How to Write.

I try to be polite — and refer students to Writing Services, on campus — when I discover

problems like these. Once again, I generally do not give very many marks for answers with

these mistakes, if I give any marks for them at all.
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Conclusion, and a Final Bit of Advice

I apologize if you are disillusioned or discouraged after reading the above!

That said: In my experience, writing proofs can be tricky when you start out, but this does often

get easier with practice.

Showing your proofs to somebody else can often be very helpful too: We are all our own worst

editors, and somebody else can often spot a mistake that we have made and missed, even

though we have checked our own work over and over again.

When the rules allow it, please do ask other students to comment on your proofs, and please

do agree to this when other students ask you to do the same. Make sure that you are con-

structive and polite, though, if there are errors that you’ve spotted!
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