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Introduction and Motivation
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 The ICT ecosystem is responsible for 10% of 
the world’s energy consumption [Mills 2013]

 Data centers account for roughly 2% of global 
energy consumption (and still growing at a rate 
of approximately 6% per annum)

 The most energy-intensive component of any 
computer is its processor [Skrenes 2016]
 90% of energy usage when active (72W/80W)

 48% of energy usage when idle (3.1W/6.4W)

 Need for more energy-efficient computing



 Minimize power consumption P

 Minimize energy cost ε

 Minimize heat, wear, etc.

 Minimize response time T

 Minimize delay

 Maximize job throughput 

Run 
faster: 

less
delay

Run 
slower:

less
energy

Dynamic Speed Scaling: adapt service rate to the current state of the system 
to balance energy consumption and performance.
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Speed Scaling: Inherent Tradeoffs



Main Messages (preview)
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 There is broad and diverse literature on 
speed scaling systems for the past 20+ years

 There is a dichotomy between theoretical 
work and systems work on speed scaling

 Modern processors provide surprisingly rich 
functionality for speed scaling that is not yet 
well exploited by systems software

 There are many interesting tradeoffs to 
explore in dynamic speed scaling systems



Talk Outline
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 Introduction and Motivation

 Background and Literature Review

 Summary of Key Results and Insights

 Recent Results and Contributions

 Practice: Experimental Measurements

 Theory: Autoscaling Effects

 Conclusions and Future Directions



Background: Theory and Systems

Theoretical Research Systems Research

 Goal: optimality

 Domains: CPU, parallel systems

 Methods: proofs, complexity, 
competitive analysis, queueing
theory, Markov chains, worst case, 
asymptotics, simulation

 Metrics: E[T], E[ε], combo, 
slowdown, competitive ratio

 Power: P = sα (1 ≤ α ≤ 3)

 Schedulers: PS, SRPT, FSP, YDS

 Speed scalers: job-count-based, 
continuous and unbounded speeds

 Venues: SIGMETRICS, PEVA, 
Performance, INFOCOM, OR

 Goal: practicality

 Domains: CPU, disk, network

 Methods: DVFS, power meter, 
measurement, benchmarking, 
simulation, power gating, over-
clocking, simulation

 Metrics: response time, energy, 
heat, utilization

 Power: P = a Ceff V2 f 

 Schedulers: FCFS, RR, FB

 Speed scalers: threshold-based, 
discrete and finite speeds

 Venues: SIGMETRICS, SOSP, OSDI, 
ISCA, MASCOTS, TOCS
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Key Results: Single-Speed World

 PS is the gold standard for fairness

 Asymptotic convergence of slowdown for all 
work-conserving scheduling policies

 SRPT is “Sometimes Unfair”

 YDS is optimal for energy consumption

 FSP dominates PS for response time
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Key Results: Speed Scaling World

 No policy can be optimal, robust, and fair

 Speed scaling exacerbates unfairness

 Asymptotic convergence of slowdown 
property no longer holds

 FSP’s dominance of PS breaks under coupled 
speed scaling

 FSP’s dominance of PS is restored under 
decoupled speed scaling
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PSFSP-PS

FSP

T-FSP

YDS

α

17

Example Simulation Results: IEEE MASCOTS 2014



Typical Modeling Assumptions

 Single-server queue for CPU service

 Single batch of n jobs arrive at time 0

 Job sizes known in advance

 Dynamic speed scaling with s = f(n)

 Power consumption P = sα where 1 ≤ α ≤ 3

 Maximum system speed is unbounded

 System speeds are continuous (not discrete)

 Context switches are free (i.e., zero cost)

 Speed changes are free (i.e., zero cost)
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Question: How would they perform on real systems?



Bridging Theory and Practice

 Profilo enables all scheduling and speed scaling 
algorithms to be analyzed on real systems.
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Profilo Design [Skrenes 2016]
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 Flexible framework for the experimental evaluation 
of arbitrary scheduling and speed scaling policies

 Hybrid user-mode and kernel-mode implementation

 User space: CSV file input to specify workload

 Kernel space: carefully-controlled job execution, 
timing, and energy measurement using RAPL MSRs

User space

Kernel space

P1  5   20
P2  7   12
P3  2   50
P1   1   10
P4  10   8
P2   5   30
…

1. Process args
2. Set up environment
3. Profiling
4. Summarize results

Work unit (primes)
Do work (loops)
Sleep busy
Sleep deep

sysfs API



Running Average Power Limit (RAPL)

 Non-architectural model specific registers (MSRs)

 Accurate power meters for each of the domains 
(independently found to match actual power 
measurements)

 Four domains (three for any given CPU)

— Power Plane 0 (PP0)

— Power Plane 1 (PP1) – Consumer Packages Only

— DRAM [8], [15] – Server Packages Only

— Package (PKG)
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Frequency
(MHz)

PP0 (W) PKG (W) Context
Switch (us)

Mode Switch 
(ns)

Speed
Switch (us)

2301 (3300) 11.5 15.3 1.140 44.8 0.76

2300 5.4 9.2 1.634 64.2 1.09

2200 5.0 8.9 1.708 67.0 1.14

2100 4.8 8.6 1.808 70.2 1.20

2000 4.6 8.4 1.898 73.7 1.26

1900 4.5 8.3 1.999 78.3 1.32

1800 4.3 8.0 2.118 81.9 1.38

1700 4.1 7.9 2.213 86.7 1.47

1600 3.9 7.6 2.369 92.1 1.56

1500 3.7 7.5 2.526 98.6 1.67

1400 3.5 7.3 2.709 105.3 1.81

1300 3.3 7.1 2.886 113.4 1.93

1200 3.1 6.9 3.167 123.1 2.09
Page 22
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H

Highly linear throughout most of range!

Quite unpredictable and uncontrollable!

Plus multiple sleep and idle modes (not shown here)

Measurement Results
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Experimental Evaluation Setup

 Three workloads (each with batch of 12 jobs)

1. Homogenous

2. Additive (arithmetic progression)

3. Multiplicative (factors of 2)

 Three algorithms

1. PS (epitomizes fairness)

2. YDS (minimizes power consumption)

3. FSP-PS (decoupled speed scaling; improves mean 
response time while retaining fairness)
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Experimental Evaluation Results
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• Observation 1: Decoupled speed scaling (FSP-PS) provides a significant response 
time advantage over PS, for the “same” energy costs

• Observation 2: The response time advantage of FSP-PS decreases as job size 
variability increases

• Observation 3: FSP-PS has a slight energy advantage over PS because of fewer 
context switches between jobs

• Observation 4: YDS has the lowest energy consumption among these policies 
(even better than expected due to discretization effect, and no speed changes)



Simulation Results
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Summary: Practice

 Designed and implemented a novel experimental 
platform (Profilo) for fine-grain energy measurements

— Hybrid user-space/kernel-space using RAPL and hrtimers

— Flexible platform to quantify tradeoffs between different 
scheduling and speed scaling strategies

 Used this experimental platform to do the following:
— Micro-benchmark a modern Intel processor to measure 

system costs and power consumption

— Calibrate/validate a discrete-event simulator for dynamic 
speed scaling systems

— Compare and evaluate three different speed scaling 
strategies from the literature: PS, FSP-PS, and YDS

 Gained new insights into practical aspects of dynamic 
speed scaling systems
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Introduction

 Dynamic CPU speed scaling systems

 Service rate adjusted based on offered load

 Classic tradeoff:

— Faster speed  lower response time, higher energy usage

 Two key design choices:

— Scheduler: which job to run? (FCFS, PS, FSP, SRPT, LRPT)

— Speed scaler: how fast to run? (static, coupled, decoupled)

 Research questions:

— What are the “autoscaling” properties of coupled (i.e., job-
count based) speed scaling systems under heavy load?

— In what ways are PS and SRPT similar or different?
3
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System Model (1 of 4)

3
3

μ
0 21 43

λ λ λ λ λ

μ μ μ μ

Review: Birth-death Markov chain model of classic M/M/1 queue
Fixed arrival rate λ
Fixed service rate μ

Mean system occupancy:   N = ρ / (1 – ρ)
Ergodicity requirement: ρ = λ/μ < 1

pn = p0 (λ/μ)n

U = 1 – p0 = ρ

…



System Model (2 of 4)

3
4

μ
0 21 43

λ λ λ λ λ

2μ 3μ 4μ 5μ

Birth-death Markov chain model of classic M/M/∞ queue
Fixed arrival rate λ
Service rate scales linearly with system occupancy (α = 1)

Mean system occupancy:   N = ρ = λ/μ
System occupancy has Poisson distribution
Ergodicity requirement: ρ = λ/μ < ∞

pn = p0 ∏ (λ/(i+1)μ)
i=0

n-1

U = 1 – p0 ≠ ρ

…

FCFS = PS ≠ SRPT



System Model (3 of 4)

3
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μ
0 21 43

λ λ λ λ λ

2μ 3μ 4μ 5μ

Birth-death Markov chain model of dynamic speed scaling system
Fixed arrival rate λ
Service rate scales sub-linearly with system occupancy (α = 2)

Mean system occupancy:   N = ρ2 = (λ/μ)2

System occupancy has higher variance than Poisson distribution
Ergodicity requirement: ρ = λ/μ < ∞

pn = p0 ∏ (λ/(   i+1)μ)

√ √ √ √

√
i=0

n-1

…



System Model (4 of 4)

3
6

μ
0 21 43

λ λ λ λ λ

2μ 3μ 4μ 5μ

Birth-death Markov chain model of dynamic speed scaling system
Fixed arrival rate λ
Service rate scales sub-linearly with system occupancy (α > 1)

Mean system occupancy:   N = ρα = (λ/μ)α

System occupancy has higher variance than Poisson distribution
Ergodicity requirement: ρ = λ/μ < ∞

pn = p0 ∏ (λ/(   i+1)μ)

√ √ √ √

√
i=0

n-1

α α α α

α

…



Analytical Insights and Observations

 In speed scaling systems, ρ and U differ

 Speed scaling systems stabilize even when ρ > 1

 In stable speed scaling systems, s = ρ (an invariant)

 PS is amenable to analysis; SRPT is not

 PS with linear speed scaling behaves like M/M/∞, 
which has Poisson distribution for system occupancy

 Increasing α changes the Poisson structure of PS

 At high load, N  ρα (another invariant property)

3
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PS Modeling Results

3
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SRPT Simulation Results

3
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Comparing PS and SRPT

 Similarities:

— Mean system speed (invariant property)

— Mean system occupancy (invariant property)

— Effect of α (i.e., the shift, the squish, and the squeeze)

 Differences:

— Variance of system occupancy (SRPT is lower)

— Mean response time (SRPT is lower)

— Variance of response time (SRPT is higher)

— PS is always fair; SRPT is unfair (esp. with speed scaling!)

— Compensation effect in PS

— Procrastination/starvation effect in SRPT 4
0



Busy Period Structure for PS and SRPT 
(simulation)

4
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Simulation Insights and Observations

 Under heavy load, busy periods coalesce and U  1

 Saturation points for PS and SRPT are different

— Different “overload regimes” for PS and SRPT

— Gap always exists between them

— Gap shrinks as α increases

— Limiting case (α = ∞) requires ρ < 1  (i.e., fixed rate)

 SRPT suffers from starvation under very high load

 “Job count” stability and “work” stability differ

4
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Summary: Theory

 The autoscaling properties of dynamic speed scaling 
systems are many, varied, and interesting!

— Autoscaling effect: stable even at very high offered load (s = ρ)

— Saturation effect: U  1 at heavy load, with N  ρα

— The α effect: the shift, the squish, and the squeeze

 Invariant properties are helpful for analysis

 Differences exist between PS and SRPT

— Variance of system occupancy; mean/variance of response time

— Saturation points for PS and SRPT are different

— SRPT suffers from starvation under very high load

 Our results suggest that PS becomes superior to SRPT for 
coupled speed scaling, if the load is high enough

4
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Concluding Remarks
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 There is broad and diverse literature on 
speed scaling systems for the past 20+ years

 There is a dichotomy between theoretical 
work and systems work on speed scaling

 Modern processors provide surprisingly rich 
functionality for speed scaling that is not yet 
well exploited by systems software

 There are many interesting tradeoffs to 
explore in dynamic speed scaling systems



Future Directions

 Cost function for speed scaling optimization

 Redefining the benchmark for fairness

 Stability (or quasi-stability) in overload regimes

 Extending PSBS to speed scaling scenario

 Practical schedulers and speed scalers for 
modern operating systems that better exploit 
the available hardware features

 Speed scaling policies on multi-core systems
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The End
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 Thank you!

 Questions?

 For more info: carey@cpsc.ucalgary.ca


