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Abstract—Shared micromobility is a rapidly growing trans-
portation technology, with several companies establishing e-bike
and e-scooter programs in cities all across the globe. In this
paper, we use two years of empirical data on e-scooter usage
from a pilot project in the City of Calgary to create a synthetic
workload model of e-scooter traffic. Using this model, we develop
a simulation environment to evaluate the impacts of different e-
scooter management policies (e.g., fleet size, battery re-charging
strategies, and urban parking infrastructure locations) on the
efficacy of the e-scooter system. Our simulation results highlight
the importance of proper site selection for parking areas and
battery charging infrastructure.

Index Terms—Shared micromobility; Simulation modeling;
System design and optimization

I. INTRODUCTION

In the past few years, bikes and scooters available for short-
term rental have been deployed in cities all over the world
as part of a paradigm shift in transportation towards shared
mobility. As the global population becomes more urbanized,
city planners are faced with the challenge of maintaining
efficient and accessible transportation options in increasingly
dense population centers. Shared vehicles play a key role
in sustainable cities, and the market for these services has
continued to grow rapidly since their introduction.

Shared mobility programs can offer many benefits in an
urban setting. These include reducing reliance on personal
vehicles, ameliorating traffic congestion, and making public
transit more accessible by providing first-mile/last-mile access
to major transit stations. Furthermore, the flexibility, novelty,
and low cost of this transportation option make them appealing
both for commute (e.g., work, school) and non-commute (e.g.
leisure, sight-seeing, social outings) trips.

Nonetheless, implementing an urban shared micromobility
program has its own set of challenges. From a user point
of view, issues include consumer adoption, cost, ease of
use, safety, and pandemic-related considerations. From the
city’s perspective, challenges include infrastructure require-
ments (e.g., pathways, parking, re-charging stations), man-
agement policies (e.g., rider rules, sidewalk use, vendor se-
lection, clutter from improperly parked scooters [15]), road
safety (i.e., speed limits, interactions with cars, bikes and
pedestrians), and sustainability. From a vendor’s point of
view, challenges include operating costs and profitability (e.g.,
fleet size, pricing, battery re-charging strategies, revenue/cost
sharing agreements).

These challenges are novel and involve multiple perspec-
tives. Although ride-sharing and car-sharing programs have
similar issues, and have existed around the world for quite

some time, the current trend towards bike-sharing and scooter-
sharing programs is quite recent. As such, there are relatively
few studies on shared micromobility programs that might
inform research and/or policy on these issues.

This paper aims to address some of these challenges, using
the City of Calgary as a case study. In 2018, the City
of Calgary announced a two-year pilot program for shared
micromobility using e-bikes and e-scooters. Following the
pilot study, the City released an open dataset to the public
that included trip data for almost half a million e-bike and
e-scooter trips for the years 2019 and 2020. The empirical
data showed far greater usage for e-scooters than for e-bikes,
and sustained growth in usage even during the pandemic. The
City has since committed to a permanent year-round e-scooter
program, and is in the process of selecting the vendors to
provide and manage the scooters.

In this paper, we use simulation modeling to explore design
issues and management strategies for a shared micromobility
program based on e-scooters. Through analysis of the em-
pirical 2019 and 2020 e-scooter data, we develop a detailed
workload model including e-scooter trip characteristics, trip
volume, and geospatial distribution within the downtown area.
From this characterization, we construct a synthetic workload
generator and a simulation model of Calgary’s e-scooter sys-
tem. We then use this simulator to conduct experiments that
examine the performance of the e-scooter service as impacted
by factors such as e-scooter fleet size, parking infrastructure
location and capacity, and battery re-charging infrastructure.
Our simulation results offer insights into promising manage-
ment strategies for an e-scooter system.

The research contributions outlined in this paper are:

o a workload characterization of e-scooter trips in down-
town Calgary based on empirical trip data;

« a discrete-event simulation model constructed from that
characterization; and

« results from simulation experiments regarding fleet size,
parking locations, and battery charging infrastructure.

The remainder of this paper is organized as follows. Sec-
tion II provides background information on shared micromo-
bility, and reviews prior related research on shared mobil-
ity and traffic simulation. Section III provides a workload
characterization of e-scooter traffic. Section IV describes the
construction and validation of our simulation model. Section V
presents simulation results, including the scenarios considered
and our findings. Finally, Section VI concludes the paper.



II. BACKGROUND AND RELATED WORK

This section provides some background information on the
field of shared micromobility and transportation simulation.

A. Shared Mobility

Shared mobility describes any transportation services that
are shared by multiple users, including vehicle-sharing and
ride-sharing services. The term ‘shared micromobility’ specif-
ically encompasses bike- and scooter-sharing programs, such
as those offered by companies like Bird, Lime, Roll, and Spin,
who provide a fleet of vehicles for short-term rental use. These
programs are rapidly gaining popularity around the world, with
a reported market potential of $200-300B in the United States
by 2030 [4]. At the time of writing, Lime has established
shared mobility programs in more than 100 cities across the
United States, Canada, and Europe [8], while Bird has more
than 200 scooter-share programs worldwide [1].

There are many reasons why cities may want to pursue the
development of shared micromobility services. Studies have
shown that these programs create positive health impacts and
reduce greenhouse gas emissions [14]. Moreover, increased
availability of bike- and scooter-share options may also help
to address transportation inequity by reducing reliance on
individual vehicle ownership for transportation, and facilitating
first-mile/last-mile connections to public transit [13].

In recent years, the focus of shared micromobility programs
has begun to shift from bikes to scooters. In 2019, the National
Association of City Transportation Officials reported that e-
scooter usage had surpassed bike usage in shared-mobility
trips, with 36.5 million bike-share trips and 38.5 million
scooter-share trips in the United States the previous year [9].

In 2018, the City of Calgary announced a two-year pilot
program on shared micromobility, with fleets of dockless bikes
and e-scooters throughout the city. Anonymized trip data,
amounting to approximately 450K trips, was collected in 2019
and made available to the public in 2020 [16].

B. Related Work

The prevalence of e-scooters in shared mobility systems is
a relatively recent development, so there are comparatively
few studies on shared e-scooter programs. Nonetheless, the
body of research on this topic has been growing rapidly
with the increasing public interest in shared e-scooters. As
shared micromobility continues to develop and become more
established within transportation ecosystems, understanding
traffic patterns, costs and benefits, and necessary infrastructure
will be crucial in maximizing the efficacy of these systems.

Prior studies of shared e-scooters have focused primarily on
characterization and behavioural analysis of the users. In 2017,
Sheehan et al. [13] discussed the relationship between shared
mobility and transportation equity, and identified specific geo-
graphic, economic, social, and technological barriers to access.
In 2020, Jiao and Bai [6] examined 1.7 million e-scooter trips
in Austin, TX between April 2018 and February 2019, and
confirmed that e-scooter usage tends to correlate with specific
elements of the built environment, such as university campuses

or the downtown. Reck et al. [11] investigated the influences
of factors such as distance and time of day on the choice
that users make between different shared-mobility vendors and
different modes of transportation.

Another common approach to studying disruptive trans-
portation technologies is to use simulation or case studies to
examine the impact of policy or technology on the efficacy of
these systems, or to consider possible approaches to addressing
known challenges. For example, Clemente et al. [2] identified
the key challenges of the ‘car sharing problem’ as: (1) optimal
fleet size; (2) location of parking areas; (3) pricing policies;
and (4) flexibility of use. They investigated strategies for
maintaining appropriate geographical distribution of vehicles
without unduly compromising flexibility, via real-time mon-
itoring and pricing incentives. Subsequently, Pfrommer et
al. [10] examined similar issues with regard to public bicycle
sharing schemes. They compared the effectiveness of a tailored
routing algorithm for collection and redistribution of bicycles,
and proposed dynamic incentives to encourage users to adjust
the destinations of their trips. Our work is similar to these
prior works, but with a specific focus on an e-scooter system.

More generally, simulation modelling has been used to eval-
uate public transport accessibility [5], and to determine optimal
placement of EV charging stations to maximise the effective
range of electric cars [12]. In 2016, Dia and Javanshour [3]
conducted simulation experiments to assess the feasibility of
using autonomous shared mobility vehicles. More recently,
Yan et al. [17] used simulation modeling to determine optimal
locations for battery-swapping stations to facilitate shared e-
scooter travel between tourist destinations.

III. DATA AND ANALYSIS

We used two empirical datasets for the construction and
validation of our simulation model, as described next.

The first dataset is the collection of detailed trip-level data
from 2019, which is available [16] on the City of Calgary’s
open data portal. Table I shows the relevant headers from
this dataset, which summarizes e-scooter trips on an hourly
basis from May to December in 2019. Although these data in-
clude some geographic information, there is insufficient spatial
resolution to derive any particular traffic patterns beyond an
obvious concentration of scooter trips within the downtown
area. For the purposes of our study, we filtered this dataset to
focus solely on trips in the downtown area.

The second dataset consists of aggregate data from 2019
and 2020, including geographic information about scooter
parking and scooter traffic volumes along individual streets.
This dataset does not contain any trip-level information.

A. Daily Traffic Volume

Figure 1 shows the total daily count of e-scooter trips in
2019 and 2020. The periodic spikes in the graph reflect weekly
cycles, for which scooter usage differs between weekdays
and weekends. The total daily trip volume is highest in the
summer months (June to September), which is consistent with
the weather conditions necessary for safe scooter operation.



TABLE I
OVERVIEW OF CITY OF CALGARY DATASET (2019)

[ Field Name |
Start Date
Start Hour
Start Day

Trip Distance

Trip Duration
Start Point
End Point

Data Type |
Date
int (0-23)
String
int (meters)
int (seconds)
Point(Lat, Long)
Point(Lat, Long)

The scooters were introduced to Calgary’s streets later in 2019
(July) than in 2020 (May), resulting in different peaks in usage.
The maximum fleet size also increased to 2,300 in 2020 from
1,500 in 2019. Despite the public health orders in response
to the COVID-19 pandemic, which limited commuter traffic
to and from the downtown, and reduced the permitted scooter
fleet size in May and June, the overall trip volume is distinctly
higher in 2020 compared to 2019. These trends suggest that
demand for e-scooter shared mobility continues to grow.
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Fig. 1. Daily e-scooter trips in Calgary (2019 and 2020 data)
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Fig. 2. Avg number of e-scooter trips by hour and day of week (2019 data)

B. Hourly Trip Volume

An analysis of the average number of trips per hour reveals
a clear diurnal pattern, as shown in Figure 2. Specifically, trip
volumes peak around 4PM, and decline to their lowest values
after midnight. Figure 2 also shows a notable difference be-
tween weekend and weekday traffic patterns. Weekday traffic
follows a well-known tri-peaked behaviour [11], with distinct
peaks at 8AM, 12PM, and 4PM, which correspond to morning
rush hour, lunch hour, and evening rush hour, respectively.
By contrast, weekend traffic increases later in the day, and
has only a single peak in the early afternoon. All days have
a slight ‘shoulder’ in the traffic patterns around 9PM, with
this shoulder being most pronounced on Friday and Saturday
evenings, and least evident on Sunday and Monday evenings.

C. Geospatial Distribution

In both datasets, the majority of scooter trips originate from
the downtown area. When broken down by neighborhood, the
2020 aggregate data shows that 68% of trips occur within the
six neighborhoods at the heart of downtown.

Figure 3 is a heatmap showing the daily average trip count
across each street in downtown Calgary. There is a high
concentration of trips along the River Walk on the north (top)
edge of downtown, with other noticeable concentrations along
the 8*" Avenue pedestrian mall (adjacent to the downtown
Light Rail Transit line), 12t Avenue, and 17" Avenue. There
are also many scooter trips along 4*" Street and 5" Street,
which are two of the main connectors across the railway tracks
separating the north and south parts of downtown.

low traffic volume

high traffic volume

Fig. 3. Average daily trip volume on streets in downtown Calgary (2020 data)

D. Trip Characteristics

Figure 4 shows a statistical summary of the characteristics
of e-scooter trips. From top to bottom, these graphs show
the empirical distributions (histograms) for trip distance (in
meters), trip duration (in seconds), and the average speed
(in kilometers per hour, kph) during the e-scooter trip. The
observed trip distances range from 100 m (i.e., slightly less
than a typical city block) to more than 27 km. The mean trip
distance is approximately 1.7 km. The shape of the distribution
resembles an exponential distribution (CoV = 1.04), though
the variance is higher, and the upper tail more pronounced.

Figure 5 shows that trip distance varies sharply by time of
day. The predominant diurnal pattern shows a relatively steady



increase in average trip distance throughout the day, but with
an abrupt drop in the wee hours of the morning. In addition,
there is a pronounced difference between weekend trips and
weekday trips. Weekends tend to have longer average trips
with a peak earlier in the day, suggesting that these trips are
recreational rather than for commuting.
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Fig. 4. Empirical distributions for distance, duration, and speed (2019 data)

The trip durations follow a similar distribution to the trip
distances, but deviate even more from an exponential distribu-
tion (CoV = 1.08). The shortest reported trip distance in the
2019 dataset is 30 seconds; the longest exceeds 2.5 hours.

The average trip speed, shown in Figure 4(c), does not
resemble any immediately obvious distribution. These values
are not reported in the 2019 dataset; rather, they are calculated
(as a sanity check) from the distance and the duration. Interest-
ingly, there is some correlation between speed and distance,
as shown in Figure 6. While the maximum observed speed
is near 30 kph (consistent with the reported top speed of
many commercial e-scooters) regardless of trip distance, the
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Fig. 5. Average trip distance (m) by hour and day of week (2019 data)

minimum observed speed increases steadily with trip distance.
This makes sense intuitively, since people going on long trips
are unlikely to do so slowly. Furthermore, users may grow
more comfortable with higher speeds once they have become
familiar with riding e-scooters.
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Fig. 6. Scatterplot of trip speed and trip distance (2019 data)

IV. SIMULATION MODEL

Based on the empirical trip data, we developed a workload
model to generate 30 days of synthetic e-scooter trips within
a Java simulation environment. Table II shows the parameters
and settings used. To reduce computational load while pro-
cessing a month’s worth of simulated trips on the geographic
model of downtown Calgary, the simulation model focused on
the events for: (1) beginning a trip; (2) ending a trip; and (3)
the vendor collecting idle low-battery scooters to be recharged.

Several simplifying assumptions were made while con-
structing the simulation model, as follows:

e new e-scooter trips occur according to a Poisson arrival
process, whose rate varies with time and day of week;

« users select e-scooters at random without preference for
location or battery charge level, as long as the e-scooter
has sufficient charge to complete the planned trip;

e no trips are abbreviated by low e-scooter battery level;



TABLE II
SIMULATION MODEL PARAMETERS

Default Value/Distribution |
500
Exponential(hour, dayOfWeek)
Exponential(hour, weekday/weekend)
Empirical
25%

[ Parameter [

Number of Scooters
Inter-Trip Time
Trip Distance
Trip Speed
Low Charge Threshold

o all e-scooter trips maintain a constant speed between
initial acceleration and final deceleration, with no stops;
« after recharging, e-scooters are returned to the fleet at the
same location where they were picked up for recharging.

A. Trip Generation

Because neither of our empirical datasets included trip
start times at a sufficiently fine granularity to determine
the empirical inter-arrival time distribution, we assumed that
the arrival process would follow a Poisson (random) arrival
process, though with time-varying rates. For this purpose,
we constructed a 24x7 array to represent the mean inter-
arrival time on an hourly basis for each day of the week. We
then generate simulated inter-trip times at random from an
appropriate exponential distribution. These inter-arrival times
can be scaled by a constant factor to reflect the increased trip
volumes reported in the 2020 aggregate data.

The target trip distance is similarly selected from an expo-
nential distribution, using a 24x2 array of average hourly trip
distances observed for weekdays or weekends. This distance
determines the minimum bound for the average trip speed,
which is then selected from the empirical distribution deter-
mined from the 2019 trip data.

As part of the validation for our synthetic workload model,
we produced Quantile-Quantile (QQ) plots comparing the
simulated trips with the empirical data from 2019. Figure 7
shows that the synthetic trip generation using these methods
closely approximates real-world trips. The fit for trip speed
is excellent (as expected, since the empirical distribution is
used), while the fit for trip distance is satisfactory. The main
deficiency is in the tail of the distribution, for which the
exponential model is lighter than the empirical distribution.

When a new trip event is generated, a random e-scooter
is selected from the pool of available e-scooters (i.e., not
currently occupied, and not being recharged). If the e-scooter
does not have sufficient battery level remaining to travel the
full distance of the planned trip, a new e-scooter is randomly
selected. If, after five attempts, no suitable e-scooter has been
selected, the trip is counted as unfulfilled. Because both the
2019 and 2020 datasets contain information about fulfilled
demand, it is difficult to determine ground truth for unfulfilled
demand. Furthermore, since neither dataset provides sufficient
detail about the directionality of traffic, we use the location of
this randomly selected e-scooter to determine the origin point
of the trip, rather than a randomly selected origin determining
the e-scooter to be used.
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Fig. 7. QQ plots for validation of synthetic workload model

To generate a route for each trip, the simulation uses a
deterministic algorithm that starts at the origin and iteratively
extends the trip by selecting a neighbouring edge until the
desired trip distance is achieved. Edge selection is weighted
by the average daily trip count reported across that edge in
the 2020 data. Backtracking is permitted only if no other edge
choices are possible. Although this method does not directly
model directionality of traffic, it should on average create a
comparable spatial distribution of e-scooter traffic.

B. E-Scooter Battery Model

We constructed a detailed model for e-scooter batteries
based on the electric vehicle battery usage equations given
by Kurczveil et al. [7]. Their formulae use kinematics to
determine the energy transferred between the vehicle battery
and the vehicle motor. In the following Equations (1)-(7), v
is the speed, and As is the distance travelled. Fyqy refers to
the chemical potential energy remaining in the battery, and
E.h refers to the kinetic energy residing in the vehicle. We
ignore potential energy since the downtown core in Calgary
is relatively flat. Egq;, is the energy gained (or lost) by the
battery between discrete time steps k£ and k£ + 1.



Ebatt [k + 1] = Ebatt [k} + AEgain[k + 1} * Nrecup (1)
Bhatelk + 1] = Epaue[K] + AEgainlk +1] - 150, (2)
A-Egain [k] = Eveh[k} - Eveh[k + ]-] - Eloss[k] (3)
Fuen = gmo? (4)
Eloss[k] = A-Eair [k} + A-Eroll[k} (5)
AEair[k] - %pair : Aveh cCy 1)2[]{} ! |A5[k] (6)
AEroll[k] =Croll "M - g - |As[k]| (7)

Using these equations, battery usage is estimated based on
distance travelled and the average speed. We use Equation
(1) when the energy gain from the battery is positive (i.e.,
deceleration), and Equation (2) when the energy gain is
negative (i.e., acceleration, or constant speed). Our simulation
assumes each e-scooter battery contains 1350 kJ at full charge.
Table III shows the other values used in our battery model.

To simulate e-scooter recharging, a recurring event is sched-
uled for 10PM each evening to represent the vendor managing
their fleet. This event creates a list of every e-scooter with a
depleted battery level below the charging threshold. We use
a Shortest-Seek-Time-First algorithm to determine the order
for scooter collection, starting from an arbitrarily chosen edge
on the northeast corner of the simulation map. To reduce
computational load, the distances are estimated using the Man-
hattan distance between latitude and longitude coordinates.
The time required to collect the e-scooters is estimated from
this distance using a constant truck driving speed of 30 kph,
plus an additional 60 seconds for each edge where the vendor
must stop to collect scooters, and an additional 30 seconds
for each e-scooter to be loaded onto the collection vehicle.
Scooter batteries are fully charged overnight, and the scooters
are returned to the operational fleet the next morning.

TABLE III
PARAMETERS FOR MODELING E-SCOOTER BATTERY USAGE
[ Symbol ] Meaning | Value Used |
Nprop Propulsion efficiency 0.8
Nrecup Regenerative braking efficiency 0.01
Pair Air density 1.225
Apehn Drag area of scooter and rider 0.875 m?
Cw Drag coefficient 1.2
Croll Rolling resistance coefficient 0.008
m Mass of scooter and rider 94 kg
g Acceleration due to gravity 9.81 m/s?

V. SIMULATION RESULTS

This section presents the results from our three main sim-
ulation experiments, which consider the effects of fleet size,
parking infrastructure, and battery recharging stations.

A. Fleet Size

The first simulation experiment focuses on scalability as-
pects of the e-scooter system, by varying the number of e-
scooters. The purpose is to gauge the impact of fleet size

on relevant performance metrics, such as unfulfilled trips,
improperly parked scooters, and the driving time/distance
required to collect, recharge, and redistribute e-scooters.
Table IV shows the results of these experiments, which
vary the e-scooter fleet size from 100 to 1600 (by factors of
two). Unsurprisingly, smaller fleet sizes (e.g., 100 or 200 e-
scooters) have more unfulfilled trips, and fewer e-scooters in
use at a time. However, as the e-scooter fleet size increases,
the average number of scooters concurrently in use reaches a
plateau around 65 scooters. This result is a manifestation of
Little’s Law, a well-known conservation law from the field of
queueing theory. For our baseline fleet size of 500 e-scooters,

A= 0.0664tTZpS and duration 7' = 981.6s, so the average
number of e-sésooters in use at one time should be N = 65.
When some trips are unfulfilled, the observed usage is lower.

The results in Table IV also show that as the fleet size
increases, the time and driving distance required to collect
scooters increases, and the percentage of trips ending at a
designated parking zone decreases. These undesirable trends
reflect an excess supply of e-scooters, resulting in many
unused and/or improperly parked e-scooters. These concerns
must be balanced against the desire to minimize the number of
unfulfilled trips. Based on our simulation results, at the current
demand level, the optimal number of e-scooters to operate
within the downtown area is between 400 and 500.

TABLE IV
EFFECTS OF E-SCOOTER FLEET SIZE

[ Num. Scooters [[ 100 | 200 [ 400 [ 800 [ 1600
Max. in use 100 182 208 199 195
Avg. in use 42.5 59.6 66 65.3 64.8

Succ. trips/day 3656 5227 5753 5750 5732
Unsucc. trips/day 2086 557 0 0 0

% SNG-Parked 2.87% 2.99% 2.97% 2.95% 2.90%
Avg. Coll. Time 1:24:41 1:48:35 2:01:04 2:01:48 1:55:21
Avg. Coll. Dist. 245 km | 285 km | 30.7 km | 29.7 km | 27.9 km

B. Parking Areas

The second set of simulation experiments focuses on e-
scooter parking. The aggregate data from 2020 included a
JSON file of 23 Share-and-Go (SNG) parking zone locations
within the downtown. We use these locations as the baseline
in the simulation model, assuming sufficient space for 6 e-
scooters at each SNG zone. We then determine the number of
trips ending at a parking zone with available space.

Our simulation experiments consider four strategies for
placing additional scooter parking, increasing the baseline
parking capacity by factors of 2, 4, 6, 8, and 10. The first
strategy simply increases the size of existing SNG parking
zones. The second strategy places additional SNG zone lo-
cations at random throughout the downtown area. The third
strategy places additional SNG zones on the longest streets.
The fourth strategy places additional SNG zones along streets
with the highest e-scooter traffic volumes. Figure 8 provides
a visual illustration of these latter three strategies.



(c) Volume-based edge selection

Fig. 8. Placement strategies for Share-N-Go (SNG) parking zones

In addition, these four sets of experiments were repeated
with a modification to the simulation that allowed trips that
ended on an edge with no available parking a 25% or 50%
chance of extending to an adjacent edge with a parking space
available. This variation tests the efficacy of nudging (e.g.,
discounts) to incentivize users to park their e-scooters properly.

Figure 9 presents the results from these simulation exper-
iments. The vertical axis shows the percentage of e-scooter
trips ending at an SNG zone with an available parking space
(higher is better). The colored bars show the strategies.

The results in Figure 9 reveal three interesting trends. First,
simply increasing the number of e-scooter parking spaces at
the existing SNG zones is ineffective. Adding new parking
zones is always better, even when the locations are selected at
random. The improvements are magnified when SNG zones
are placed according to edge length, and amplified further
when assigned according to e-scooter traffic volume. These
results suggest that the number and location of SNG parking

% Trips Ended in SNG Zone

o0 0

5 B N N

o B

Fig. 9. Effects of expanding existing parking zones, and adding new zones
at random, by edge length, and by volume, with 0%, 25%, and 50% chance
of extending a trip to find parking on a neighbouring edge
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zones is far more important than just the total number of
parking spaces. Second, although the volume-based strategy
for placing additional SNG zones yields the best results in
terms of trips ended at an SNG zone, the length-based strategy
is actually better when counting trips ending at or adjacent
to an SNG zone. This is likely due to the proximal clustering
of SNG zones induced by volume-weighted edge placement
(see Figure 8c). Having greater geographic spread for the
parking zones is better. Third, nudge strategies could be highly
effective. That is, modifying the simulation to extend trips
to adjacent edges with SNG zones resulted in significant
improvement in all considered scenarios. However, achieving
this behaviour in a real-world scooter system might require
the implementation of incentives to improve proper parking.

C. Battery Charging Stations

Our final simulation experiment is designed to assess the
impact of installing e-scooter battery charging stations within
the downtown area. Doing so could reduce the number of
unfulfilled trips, as well as the driving time and distance
required by vendors to manage their scooters.

Figure 10 shows the candidate charging locations considered
in the simulations. Each of the 23 existing SNG zones (A-W,
lighter) were considered, as well as ten additional locations
(a-j, darker), chosen based on e-scooter traffic volume.

Fig. 10. Map of existing parking zones (A-W, blue) and high traffic edges
(a-j, green) considered as candidate locations for charging stations



Three rounds of experiments were conducted, allowing for
one, two, or three charging stations, each capable of charging
up to six e-scooters at a time. After running an initial test
with only one charging location, and comparing the number
of scooters charged for the 33 candidate locations, the top
ten locations (L, E, R, K, W, B, C, c, a, V) were selected
for consideration in the next round. After running the second
set of tests, with pairs of charging locations chosen from the
contenders, the seven best-performing locations (R, W, B, C, c,
a, V) were used in the final tests with three charging stations.

Figure 11 shows the results from these experiments. As ex-
pected, the percentage of trips ending at a charging station with
an available charging bay (purple; higher is better) increases
when there are more charging locations. However, there are
diminishing returns: the first and second charging location
each have a pronounced effect, while adding the third one
has only a marginal benefit. Among the seven best locations
identified, four (R, B, C, V) are along 17t* Avenue, and three
(a, c, W) are along the River Walk. These locations make sense
intuitively, since they are high-traffic areas for people, bikes,
and scooters, especially on evenings and weekends.

Finally, Figure 11 shows the effects of the charging stations
on collection time (pink line; lower is better) for the vendors
when managing their fleet of scooters. From an average daily
collection time of 2 hours with no charging stations, the
average daily collection time decreases by 10% to 1 hour and
50 minutes for the best combination of three charging stations.
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0.60% 2:00:00

1:55:00

% Trips Ending at Charging Bay
3wy U0a|[0) dTesany

0.20% 1:50:00
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e % Trips Ended at Charging Station e Avg. Collection Time

Fig. 11. Effects of charging stations on availability and collection time

VI. CONCLUSIONS

In this paper, we have presented a workload characterization
study and a simulation model of the e-scooter pilot project in
downtown Calgary. Through experimentation with our sim-
ulation model, we have identified multiple important factors
impacting e-scooter parking and collection costs.

The key findings of this paper may be summarized as
follows. First, the appropriate number of e-scooters to be
deployed in downtown Calgary is between 400 and 500
scooters. Second, increasing the number of parking zones for
e-scooters is far more effective than simply increasing the
number of spaces at existing parking zones, especially if users
can be nudged to properly park their scooters. Third, installing

one or more charging stations in the downtown area would
help reduce operational costs for e-scooter vendors.

Future enhancements of our simulation model could include
the implementation of e-scooter battery-swapping stations,
or more refined models for trip origin/destination based on
empirical data and knowledge of transit hubs.
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