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Abstract—Over the past decade, Instant Messaging (IM) apps
have become an extremely popular tool for billions of people
to communicate online. In this paper, we use a combination of
active and passive measurement techniques to study one week
of IM app traffic on a large campus edge network. Despite the
challenges of end-to-end encryption, user privacy, NAT, DHCP,
and high traffic volumes, we identify the key characteristics of
four popular IM apps: Facebook Messenger, Google Hangouts,
Snapchat, and WeChat. The main observations from our study
indicate a rich ecosystem of IM apps, many of which exhibit
strong diurnal patterns, complex user interactions, and heavy-
tailed distributions for connection durations and transfer sizes.
Collectively, these four IM apps contribute about 650 GB of daily
traffic volume on our campus network.

I. INTRODUCTION

Hand-held mobile devices have experienced tremendous
growth in popularity in recent years, and this growth is
expected to continue in the future [3]. Smartphones and tablets
have improved in computational power, memory, display, and
connectivity. Unlike traditional cell phones, they run modern
operating systems that enable them to support many different
mobile applications (apps). This evolution has made mobile
functionality comparable to that offered by desktop computers
or laptops. Cisco predicted that mobile Internet traffic would
grow at a Compound Annual Growth Rate (CAGR) of 46%
from 2017 to 2022, and exceed 77% of overall Internet traffic
by 2022 [3].

The popularity of mobile devices along with Instant Mes-
saging (IM) apps have changed the way that people interact
and communicate. In 2012, IM apps overtook the Short
Message Service (SMS) operated by cellular network carriers
in terms of messages sent per day [2]. Recent years have
witnessed a fast-growing trend of using mobile IM apps such
as WhatsApp, Messenger, and WeChat, to the extent that
more and more human interactions now take place in the
digital world. With such a large user base at stake, IM apps
have added many new features to their services to provide a
competitive edge. For instance, WeChat offers video messag-
ing, online payments, localization services, game playing, and
more.

Although IM apps have gained immense popularity, there
have been relatively few network traffic characterization stud-
ies of these apps. One reason might be the difficulties in
collecting and analyzing the traffic of IM apps, due to end-to-
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end encryption, customized application-layer protocols, user
privacy issues, and rapidly changing features. Another reason
could be the mistaken assumption that the traffic volume
generated by these apps is relatively small [21]. A systematic
study of IM apps could help inform the design, implemen-
tation, and performance optimization of future network-based
systems.

In this paper, we study IM app traffic on a large campus
edge network. Our work is motivated by the capabilities of
modern smartphones, their ubiquitous network connectivity,
and the increased popularity of new IM apps for sharing large
files and multimedia content.

In this study, we focus on characterizing the network traffic
from popular IM apps, as viewed from an edge router of the
University of Calgary campus network. Our campus commu-
nity consists of over 35,000 users, including undergraduate
and graduate students, faculty, and staff.

The main aim of our study is to find answers to the
following questions:

o How much of the campus network traffic is generated
from IM apps?

o What are the key characteristics of IM app traffic?

o How are these IM apps similar to and/or different from
each other?

o What are the potential performance implications of these
apps on an enterprise network?

For our study, we collected campus-level IM traffic for
a one-week period (October 7-13, 2019). This observational
period from a recent busy semester gives us sufficient data to
study hourly, daily, and weekly patterns of IM app traffic, as
well as IM usage patterns and heavy-tailed transfer sizes.

The results from our traffic characterization study in a
campus environment are of potential value to app developers,
network operators, service providers, and protocol designers.
App developers can gain insights into actual IM usage on the
Internet, and network operators can plan for resource alloca-
tion in future networks. Service providers can gain a glimpse
of possible future demands of IM app usage, and improve the
quality of their services. Finally, protocol designers can see the
technical details of app usage for improving current protocols,
or designing new ones.

The main contributions of this paper are as follows:



o« We describe our active measurement methodology to
identify IM app traffic from a single smartphone under
test, even when the traffic is encrypted.

o We present our passive measurement methodology for
large-scale data collection from a campus edge network.

o We analyze and characterize the traffic generated by IM
apps in a large-scale enterprise network.

The rest of this paper is organized as follows. We provide
background on IM apps in Section II. Section III describes
our active and passive methodologies for data collection and
analysis. We present the workload characterization results in
Section IV. Section V discusses prior related work. Finally,
Section VI concludes the paper.

II. BACKGROUND

Instant Messaging (IM) is a technology that supports real-
time text transmission over the Internet. By 2010, users moved
away from IM Web sites to “messaging apps”. The recent
IM apps provide more advanced features such as transferring
documents, files, locations, clickable hyperlinks, games, bank-
ing, VoIP/video calls, etc. In the last decade, IM apps have
gained tremendous popularity, such that fewer people use text
messages anymore.

IM apps have become increasingly popular since they are
simple, free, real-time, reliable, and support multitasking. It
is estimated that there are billions of IM users who use
IM for many activities: free worldwide texting and calling;
sharing documents, music, and videos; scheduling face-to-face
meetings; and participating in group conversations with family,
friends, and colleagues.

In this paper, we study four popular! IM apps: Facebook
Messenger, Google Hangouts, Snapchat, and WeChat. Below,
we briefly review these four IM apps.

A. Facebook Messenger

Facebook Messenger” (known as Messenger) is an IM
app developed by Facebook in 2011 to provide a chatting
platform for Facebook users. Since 2012, users could sign
up for Messenger without having a Facebook account. When
chatting with other Facebook friends, mobile Facebook users
are required to use Messenger. Facebook Messenger has 1.3
billion monthly active users, and is the second-most popular
IM app worldwide [18].

In addition to voice and video call features, users can send
messages and exchange photos, stickers, audio, videos, and
files, as well as send payments, share locations, chat with
businesses, and play HTMLS5-based games with friends [19].
The maximum file size that can be shared is 25 MB.

!Unfortunately, we did not study WhatsApp, which is the most popular IM
app. Since WhatsApp uses P2P connections for video calls and file transfers
when both parties are online, we could not collect this traffic on our campus
network due to its technical challenges and user privacy concerns.
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B. Google Hangouts

Google Hangouts is an IM app developed by Google that
integrates features from both Google+ Messenger and Google
Talk. Hangouts supports chat conversations, phone calls, send-
ing multimedia content, and group meetings. Conversations
can include up to 150 people, and video calls can include up
to 10 people simultaneously.

At the time of writing this paper (June 2020), Google has
recently converted Hangouts into two separate services called
Meet and Chat. These services are aimed at bringing teams
together during the COVID-19 pandemic (e.g., it now enables
meetings with up to 250 people). Our data collection period
pre-dated these recent changes.

C. Snapchat

Snapchat experienced rapid and unprecedented growth in
the early history of mobile IM applications. It grew from 2
million Snapchat images per day in May 2012 to 6 billion
images/videos per day in November 2015. In addition to
text/audio/video conversation, there have been many inno-
vative features that made Snapchat a unique IM service,
especially for the younger generation. However, with the
emergence and popularity of Instagram and Tik Tok, and also
after a heavily criticized redesign, Snapchat has been declining
in popularity recently at a rate rivaling that of its meteoric rise.

D. WeChat

WeChat® is an IM app developed in China and released in
2011. With 1.1 billion monthly active users, it is the third-most
popular IM app worldwide [18].

In addition to text/video/picture messaging, WeChat pro-
vides moments (similar to stories in Facebook), mapping
and localization services, game playing, E-wallet and online
payment services, and dating. The maximum file size limit
is 25 MB. WeChat is available for mobile, desktop, and web
platforms.

III. DATA COLLECTION AND METHODOLOGY

In this section, we describe our methodology to collect
and analyze the large-scale network traffic that we used in
this study. The most common approaches for network traffic
measurement can be categorized into active and passive meth-
ods. First, we developed an active measurement technique to
identify IM app traffic for a single smartphone under test.
Second, we conducted passive measurements to collect and
analyze a large volume of IM network traffic for this study.
Here we explain these two phases in progressive detail.

A. Active Measurement

Active measurement refers to injecting traffic into the net-
work for the purpose of measurement. To study IM network
traffic generated from a particular mobile app, we experi-
mented with a single mobile device in a controlled testbed
environment.

3www.wechat.com



Active measurement brings several advantages to our study.
First, it indicates the domain names, IP addresses, and port
numbers that an application uses. Second, it identifies the
traffic patterns associated with different interactions like lo-
gin, downloading, uploading, streaming, and logout. Third,
it provides an overview of generated TCP/UDP connections
and the application’s traffic behaviour. Fourth, it enables us to
study application behaviour in different settings like different
devices, operating systems, and network connection types.

However, there are some challenges with active measure-
ment. First, the capturing mechanism should not interfere with
application performance. Second, many applications, and in
particular IM apps, use end-to-end encryption to secure their
connections. Developers use encryption mechanisms to protect
user privacy and also to conceal advertising and tracking
connections. Finally, there is traffic from other smartphone
apps that needs to be filtered (removed) from the analysis.

B. Passive Measurement

Passive measurement refers to capturing traffic generated
by other users and applications in the network. It consists of
observing traffic omnisciently at an observation point to extract
traffic information and performance metrics. Such data can
be collected at end hosts or at intermediate nodes within the
network, providing insights into the activities at a node or on
a network link.

Large-scale traffic measurement faces many challenges.
First, it requires having network measurement facilities that
are capable of capturing all traffic passing through the campus
network. Second, it requires a massive storage infrastructure
to store traffic data. Third, we need a mechanism to retrieve
and analyze several terabytes of raw data. The final challenge
relates to ethical considerations and user privacy. In the next
subsection, we explain how we address these many challenges.

C. Data Collection Details

Here, we describe the details of our active and passive
measurement approaches.

1) Active Measurement Phase: Our active measurement
methodology captures the network traffic generated from an
IM app running on a specific smartphone under test. We
conducted the active measurement on both Android and iOS
platforms. All measurements were done on a Google Pixel
smartphone (Quad-Core 2.15 GHz CPU, 4 GB RAM) running
Android 8.0, and an iPhone 7s (Quad-Core 2.70 GHz CPU,
3 GB RAM) running iOS 13.1. We used a separate PC (Core
i7, 8-core, 3.6 GHz CPU, 8 GB RAM) running Ubuntu 18.04
Linux to capture all incoming and outgoing network traffic
from the smartphone. Both the PC and the smartphone were
associated to the same WiFi access point.

To intercept the network traffic, we set up a man-in-the-
middle (MITM) proxy to pass the smartphone traffic through
the desktop machine. We installed MITMproxy 5.0 [4] and
Wireshark* on the desktop PC to capture full packet traces
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of Internet traffic activities. Prior to running experiments, we
performed a factory reset on the smartphone, and we removed
all extraneous apps that we were able to delete. Then we
installed the MITMproxy CA Certificate on the smartphone
and configured the smartphone proxy to the IP address of
the desktop PC. We disabled Internet access for any other
remaining mobile apps.

We manually tested all of the features of each IM app during
a 10-minute experimental session. We repeated this process
on several different days to make sure that the destination IP
addresses were consistent. During each test, the smartphone
traffic was passed through the MITMproxy and Wireshark, and
all HTTP/HTTPS flows and packet-level traffic were collected.

In addition to our four target IM apps, we conducted active
measurements on other related apps from the same vendor.
For example, we collected data from other Facebook apps
to determine if Facebook Messenger was using distinct IP
addresses. We observed that all of the IM apps under study
mainly made connections to distinct IP addresses. However,
we observed that all Facebook apps (i.e., Facebook, Insta-
gram, and WhatsApp) connect to analytics servers like the
graph.facebook.com service. However, the number of
such connections was negligible.

From the active measurements, we obtained a list of the
main [P addresses used by each IM app.

2) Passive Measurement Phase: The dataset for our study
was collected using passive network traffic measurement at the
University of Calgary main campus, where the edge routers
connect the campus network to the Internet. Our edge network
is used by about 32,000 undergrad/grad students and 3,000
faculty/staff.

For our passive measurements, we used an Endace’® DAG
(Data Acquisition and Generation) Packet Capture Card in-
stalled at the router that connects the University of Calgary
campus network to the Internet. Due to storage limitations
and user privacy concerns, our data collection mechanism
stores the network traffic only as connection-level summaries,
and does not record network packet payloads. First, the DAG
card sends the captured traffic to a set of Bro (Zeek) worker
nodes® that are running on our monitoring system. Then Bro
summarizes each connection using a one-line entry in its
connection log. This entry contains many fields, including a
timestamp, the IP addresses and ports of source and destina-
tion, the TCP connection duration, the TCP connection state,
and number of packets and bytes sent and received on each
TCP connection [9].

To analyze the captured data, we use Vertica’. Vertica is an
analytic database management tool that is designed to handle
large volumes of data. It is optimized for big data analytics and
enables very fast SQL query performance using parallelization.
Once our Bro data is loaded, we use SQL queries to perform
our traffic analyses.

Shttps://www.endace.com
Shttps://zeek.org
https://www.vertica.com



D. Ethical Considerations

Ethical considerations in network traffic measurement are
paramount. Our network monitoring facilities are installed in
a secure data center and have restricted access. The permission
to collect network traffic is obtained via ethics review from the
University of Calgary, and in cooperation with IT. Our study
is related to the device-generated traffic, not human-generated
traffic. When a device connects to the campus network, it
typically receives a temporary IP address from DHCP, which
effectively makes the user anonymous. However, it is our duty
as researchers to ensure that the traffic collection is used only
for suitable research purposes, and handled in an appropriate
manner such that user privacy is respected.

IV. MEASUREMENT RESULTS

In this section, we present the traffic measurement results
from our campus edge network for the four chosen IM apps.

A. Traffic Profile

Figure 1 presents a graphical overview of the daily traffic
patterns for IM apps. Both graphs are time series plots,
showing one week of activity, with the five weekdays (Monday
to Friday) followed by the two weekend days (Saturday
and Sunday). The top graph represents the number of TCP
connections that were initiated by each app in each one-
hour interval during the week. The bottom graph shows the
corresponding plot for data traffic volume in bytes. Note that
the latter graph uses a logarithmic scale on the vertical axis.

The most noticable observation from both graphs is a strong
diurnal pattern for IM app usage on our campus. As expected,
IM activities seen by our campus network monitor are largely
driven by human presence, with strong peaks during the
normal working hours for our campus community, and then
lighter traffic in the late evening or early morning hours.
There is also an obvious reduction in activity on weekends
since fewer people are on campus then. Interestingly, WeChat
usage is the lowest among the four IM apps during normal
working hours on weekdays, but highest among the four IM
apps on evenings and weekends. This pattern might indicate
more usage among students in the campus residences, or for
IM activities with other users in different time zones (e.g.,
China).

In Figure 1, there is no direct correlation between the
number of TCP connections for a specific IM app in the upper
graph and its corresponding data traffic volume in the lower
graph. For example, Messenger has the most TCP connections
on weekdays, but the lowest traffic volume. This observation
suggests that Messenger is primarily used to send short text
messages rather than sharing files or videos.

A final observation from Figure 1 is the relatively weak
correlation between the number of connections and the data
traffic volume for all IM apps, especially on weekends. The
number of connections declines on the weekend for most
IM apps, but the traffic volume does not always decline
proportionately. This observation suggests that some IM users

(e.g., WeChat) tend to exchange larger objects (like multimedia
content) on weekends.

Hourly Connections for Four IM Apps in a Week of 2019

300000 1 1 1 1 1 1
Messenger
Hangouts
250000 Snapchat
WeChat
«» 200000
f=
k=l
@ 150000
c
[=
o
“ 100000
50000
o ¥
07/10 08/10 09/10 10/10 11/10 12/10 13/10 14/10
Time
Hourly Total Traffic for Four IM Apps in a Week of 2019
1011 L L L 1 L L
Messenger Hangouts WeChat
. §
'l'\. ,"\‘. and ‘;_ Hia \
71010 4 ! A
g L. i
> | VAN o i
E ) 1 ) \‘ \'y
1e) g !
£ /
©
= 10° A L
108 T T T T T T
07/10 08/10 09/10 10/10 11/10 12/10 13/10 14/10
Time
Fig. 1. Traffic Profile for IM Apps (October 7-13, 2019)

B. Traffic Volume

Table I provides a statistical summary of our week-long
dataset. This table shows the number of connections, mean
duration of connections, sent/received bytes, and the number
of distinct client IP addresses and subnets observed for the IM
apps on our campus network.

Table I shows that three of the IM apps (Messenger,
Hangouts, and WeChat) had comparable numbers of TCP
connections (12.1-13.4M), while Snapchat had fewer (10.8M).
Whether this reflects the relative popularity of IM apps, or
their communication architecture, is hard to say. However,
the table shows clear differences in the mean duration of
connections. Google Hangouts has the highest mean duration
(112 seconds), followed by Facebook Messenger (92 seconds),
WeChat (46 seconds), and Snapchat (21 seconds), respectively.
The mean connection durations are influenced, of course,
by default timeouts for persistent TCP connections, and by
extreme connection durations in the tail of the distributions.

In our collected active measurement data, we observed that
the IM apps typically use HTTP methods like GET and POST,
as is the norm in Web-based conversational applications. As
a result, we expected that the inbound and outbound data
volumes of IM traffic should be almost balanced. However,
there are a lot of differences across the set of IM apps, as



TABLE I

OVERVIEW OF EMPIRICAL DATASET FOR IM APP TRAFFIC (UNIVERSITY OF CALGARY, OCTOBER 7-13, 2019)

[ Ttem Description | IM app [ Mon Oct 7 | Tue Oct 8 [ Wed Oct 9 [ Thu Oct 10 | Fri Oct 11 | Sat Oct 12 [ Sun Oct 13 [ Total |
Messenger 2,568,678 2,491,317 2,603,869 2,504,171 2,087,742 562,818 489,681 133 M
TCP Connections Hangouts 2,446,284 2,381,125 2,433,521 2,404,374 2,142,826 845,388 731,959 134 M
Snapchat 1,869,472 1,886,089 2,201,279 2,109,891 1,782,527 513,141 445,273 10.8 M
WeChat 2,072,794 1,974,731 2,067,017 1,982,426 1,879,129 1,035,352 1,110,427 121 M
Messenger 92.1s 91.6 s 934 s 89.8 s 923 s 933 s 92.7 s 92.2's
Mean Duration Hangouts 1049 s 106.4 s 1053 s 103.3 s 1120 s 1253 s 1263 s 1119 s
Snapchat 49.8 s 49.0 s 428 s 423 s 42.6 s 469 s 47.1 s 458 s
WeChat 21.1s 213 s 21.0 s 21.2s 20.9 s 21.0 s 19.8 s 20.9 s
Messenger 15.6 16.2 14.2 17.4 14.5 8.8 8.6 95.3 GB
Bytes Sent (GB) Hangouts 144.1 99.6 72.6 98.6 103.0 82.3 82.4 682.6 GB
y Snapchat 27.3 26.0 27.4 29.0 28.3 19.4 16.9 174.3 GB
WeChat 19.3 16.5 19.7 235 23.8 372 27.9 167.9 GB
Messenger 38.8 37.3 374 39.3 354 15.9 14.4 218.5 GB
Hangouts 59.2 51.2 75.3 59.5 215.1 194.9 209.9 865.1 GB
Bytes Reed (GB) =g crag 363 894 825 90.4 832 55 372 5145 GB
WeChat 138.2 121.1 149.9 140.8 147.2 195.6 152.7 1.0 TB
Messenger 3,050 2,985 3,046 2911 2,768 2,009 1,934 4,054
IP Addresses Hangouts 4,525 4,522 4,502 4,497 4,132 3,030 2,966 5,469
Snapchat 1,993 1,968 1,934 1,866 1,775 1,272 1,170 2,882
WeChat 1,348 1,409 3,180 1,371 1,370 1,093 1,085 5,053
Messenger 117 116 116 113 115 67 63 126
IP Subnets Hangouts 142 146 147 146 144 129 125 154
Snapchat 44 45 43 44 44 33 28 56
WeChat 145 149 256 140 132 98 104 256

well as on a day-to-day basis. In general, three of the IM
apps (Messenger, Snapchat, and WeChat) have asymmetric
traffic volumes with 2-6x larger inbound traffic, while one
(Hangouts) actually has higher outbound traffic on several of
the weekdays. There are two reasons for the latter behaviour.
First, we found that Hangouts stores a copy of received multi-
media content on the user’s Google Photos account by default.
This means that for each inbound multimedia object, there
will be equivalent outbound traffic. Second, in an academic
environment, many faculty members use Hangouts for video
conference meetings, which increases the outbound traffic.

A final observation from Table I relates to the number of
distinct client IP addresses and subnets on which IM app
traffic was seen. These statistics reflect specific features of our
campus network, which uses DHCP, NAT, and VPN to support
wireless and wired access to the Internet. As shown in Table I,
Google Hangouts was used with the most distinct IP addresses.
This is not surprising since Google Hangouts is installed on all
Android devices by default. In contrast, we see that Snapchat
had the fewest distinct IP addresses. This result suggests that
Snapchat users are fewer in number, or not fully distributed
throughout all areas of the campus network. A possible reason
is that Snapchat is used by younger undergraduate students,
and is less popular among faculty members and international
graduate students. Surprisingly, WeChat was seen from the
most /24 TP subnets, suggesting that WeChat users are more
widely distributed across the campus than the users of other
IM apps.

C. TCP Connection State

We next analyze the TCP connection states reported in the
connection logs. Recall that a normal TCP connection starts

with an SYN/SYN-ACK handshake, then it sends/receives
data, and finally, it ends with a FIN/FIN-ACK handshake
that is represented by an SF state. However, not all TCP
connections observed in real networks obey this standard
implementation.

Table II shows that 63.7% of WeChat’s TCP connections
had the SF state, while Hangouts had 54.7%, Snapchat had
43.2%, and Messenger had 41.2%. Surprisingly, this trend
differs greatly when considering the proportion of data volume
exchanged via SF connections. For example, the latter value
is highest for Snapchat (85.8%), and lower for the other three
IM apps (Messenger 64.9%, Hangouts 61.7%, and WeChat
58.6%). These results are due to differences in app design, as
well as the OS implementations of TCP.

The S1, S2, S3, and OTH states represent long-duration
connections where the monitor did not observe both the SYN
and the FIN from each of the transport-level endpoints. This
could be because of network load or because these events
straddled across multiple connection logs (each is 3 hours in
duration).

For all IM apps, TCP resets by the originator (RSTO) are
much more prevalent than resets by the responder (RSTR). We
also see that for all IM apps that we studied, the proportion
of rejected TCP connections was negligible (i.e., less than 1%
for both connections and exchanged data).

D. Transfer Sizes

Next, we investigate the data transfer sizes and durations
of the TCP connections established by IM apps. We focus
specifically on the tails of these distributions, expecting power-
law structures as evidence of heavy-tailed distributions [16].



TABLE II
SUMMARY OF TCP CONNECTION STATES OBSERVED FOR IM APPS (UNIVERSITY OF CALGARY, OCTOBER 7-13, 2019)

TCP State Connections Bytes

Messenger | Hangouts | Snapchat | WeChat Messenger [ Hangouts | Snapchat | WeChat
SF (Normal SYN-FIN connection) 41.29% 54.79% 43.22% 63.78% 64.87% 61.70% 85.89% 58.62%
S3 (Good conn, but no FIN seen at all) 13.85% 15.99% 7.20% 8.45% 10.83% 14.11% 2.14% 8.62%
RSTO (Conn reset by originator) 11.70% 11.07% 25.26% 10.58% 7.51% 10.53% 7.43% 24.10%
SHR (SYN ACK and FIN,but no SYN) 7.99% 2.94% 1.87% 2.25% 1.42% 0.98% 0.16% 0.25%
RSTR (Conn reset by receiver) 7.82% 2.00% 0.51% 2.99% 6.53% 1.13% 0.13% 2.81%
S1 (Good conn, but server FIN only) 6.07% 5.58% 11.57% 3.30% 3.86% 6.03% 2.26% 1.29%
OTH (Mid-stream traffic (no SYN or FIN)) 4.65% 1.73% 4.21% 2.27% 1.25% 1.34% 0.53% 0.73%
S2 (Good conn, but client FIN only) 2.17% 2.94% 1.28% 2.41% 1.50% 2.23% 0.45% 1.40%
RSTOSO (Failed conn reset by originator) 1.98% 1.37% 4.12% 0.65% 0.81% 0.88% 0.91% 2.04%
SH (SYN and FIN,but no SYN ACK) 0.93% 0.81% 0.30% 0.33% 0.39% 0.47% 0.08% 0.09%
RSTRH (Conn reset by receiver) 0.52% 0.25% 0.05% 0.74% 0.51% 0.54% 0.01% 0.01%
SO (Saw SYN, but no SYN-ACK at all) 0.52% 0.35% 0.36% 2.11% 0.01% 0.00% 0.00% 0.02%
REJ (Connection ended with a Reject) 0.51% 0.18% 0.05% 0.14% 0.51% 0.06% 0.01% 0.02%

Total (All TCP connections) [[ 100.00% [ 100.00% ]

100.00% | 100.00% || 100.00% | 100.00% | 100.00% | 100.00% |

Figure 2 illustrates the log-log complementary distribution
(LLCD) plots for transfer sizes (upper graph) and connection
durations (lower graph) to visualize the tail behaviors [7]. In
the top graph, all four IM apps show evidence of heavy-tailed
transfer sizes, with Hangouts and WeChat having some of
the largest data transfers. Even Snapchat shows a pronounced
tail to its transfer size distribution, despite its lower overall
connection activity and traffic volume compared to other IM
apps. This result could be because Snapchat users usually
share images and short video files (with a 60-seconds lim-
itation). These multimedia objects obviously generate larger
data transfers than text messages, but less traffic than video
conferencing and long video streaming sessions.

The bottom graph in Figure 2 shows the LLCD plots
for TCP connection durations. All four IM apps show a
pronounced tail to the distribution, with some connections
lasting a few hours. Messenger has some of the longest-lasting
connections, while the tail behavior for Snapchat is the lightest
among these four IM apps.

E. TCP Throughput

In this subsection, we study the TCP throughput achieved by
IM apps. Network throughput (in bits per second) is calculated
from the transfer size and duration for each TCP connection.
However, for this analysis, we excluded connections that had
no application-layer data or lasted for less than 1 second.

Table III shows a statistical summary of the mean through-
put for IM apps, on a daily basis, as well as overall. As shown
in the table, the mean throughput for IM apps tends to be low,
typically 100-300 kilobits per second (Kbps). This may be
due in part to the persistent connection timeout values used,
or the type of content exchanged by the IM app. For example,
Messenger and WeChat, which are primarily used for text
messaging, have lower mean throughput than Snapchat and
Hangouts, which tend to transfer more multimedia files.

An interesting observation from this table is that for each
IM app, the mean throughput remains similar for the first
three working days, but then increases slightly on Thursday
and Friday. Furthermore, the mean throughput for some IM
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Fig. 2. LLCD Plots of Transfer Size and Connection Duration for IM Apps

apps almost doubles on the weekend. As noted earlier in
Section IV-A, this indicates that some users of IM apps tend
to send/receive larger files on weekends.

Figure 3 illustrates the LLCD plot of IM app throughput
for our one-week observation period. The throughput of IM
apps is highly variable, with a noticable upper tail. Facebook
Messenger has lower throughput than other IM apps. The other
three IM apps all have comparable throughput distributions,
including the tails.



TABLE III
MEAN THROUGHPUT (KBITS/SEC) OF FOUR IM APPS IN WEEK OF OCTOBER 7-13, 2019

Ttem Description [[ Mon Oct 7 | Tue Oct 8 | Wed Oct 9 [ Thu Oct 10 [ Fri Oct 1T | Sat Oct 12 | Sun Oct 13 ][ Average ]

Messenger 70.97 69.05 68.09 79.12 80.52 129.85 138.73 78.10
Hangouts 310.48 272.07 267.44 294.17 363.48 550.17 631.02 334.61
Snapchat 230.09 224.11 216.26 235.20 256.59 402.06 393.68 246.63
WeChat 108.19 103.03 105.07 114.17 138.92 243.43 220.91 134.53
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Fig. 3. LLCD Plot of TCP Connection Throughput for IM Apps

F. Performance Implications

As we have seen, IM app traffic can put a significant amount
of workload on our campus network. While this workload is
not extremely large compared to video streaming applications
like Netflix and YouTube (several Terabytes per day), the
traffic from IM apps will undoubtedly grow as they offer more
bandwidth-consuming features such as video messages, video
editing, multimedia stories, online games, and more.

Another important observation was a shift in IM app usage
characteristics on weekends (e.g., connections, transfer sizes,
throughput). This usage shift might also apply for other so-
cial/entertainment applications, such as social networks, video
streaming, gaming, and so on.

Observing an average of 650 GB of daily traffic volume
from only four chosen IM apps on our campus network
was higher than we expected. Considering this traffic and
its potential future impact is essential for understanding and
improving the performance of our campus network.

V. RELATED WORK

Early works on traffic characterization of IM apps ana-
lyzed unencrypted traffic of applications that were originally
designed for PC or Web platforms. Xiao et al. [20] studied
network traffic generated from AOL Instant Messenger (AIM)
and MSN/Windows Live Messenger, from 4000 employees
in a large enterprise network. They found that chat messages
contributed just a small portion of the overall IM traffic, while
the presence status, hints, and other features contributed most
of the traffic. They observed that the social network structure
of IM users can be characterized by a Weibull distribution.
In other early studies, Reust [17] studied AIM, Dickson [6]

analyzed Yahoo! Messenger, and Kiley [12] studied popular
IM Web sites.

After IM applications migrated to smartphone platforms,
these mobile apps have been the subject of numerous studies
in network security and digital forensics. These studies mainly
aim to identify data privacy leaks in IM apps, and identify user
behaviour within encrypted traffic.

Fiscone et al. [8] proposed a side-channel approach to
detect the actions of WhatsApp users within encrypted traffic.
The proposed approach is able to recognize call termination,
missed call, blocked call, and call rejection in unicast and
multicast (group call) WhatsApp conversations. Bahramali et
al. [1] investigated the encrypted traffic of IM users (mainly
Telegram) from an adversary viewpoint, with the goal of iden-
tifying (the IP addresses of) the members or administrators of
target IM channels. The main idea is to match the flow patterns
of channels to the traffic patterns of flows monitored in other
parts of the entire network. The proposed attack mechanism
can identify the channel’s administrators with 94% accuracy
when using 15 minutes of Telegram traffic (assuming that
the attacker is able to monitor the entire network, much like
a totalitarian government). Finally, they proposed IMProxy,
a countermeasure approach to decrease the efficacy of the
adversary attacks.

There are several prior studies that exploit traffic clas-
sification techniques to identify specific IM applications or
protocols among the traffic in networks. Lotfollahi et al. [15]
proposed a deep-learning traffic classification approach, called
Deep Packet. This mechanism is based on a convolutional
neural network (CNN), which is a class of deep learning
neural networks, to classify encrypted traffic. Their framework
reduces the amount of hand-crafted feature engineering and
achieves good accuracy, including the identification of IM
apps like AIM Chat and Google Hangouts. However, these
studies usually rely on lab-generated datasets for the training
and classification phases. We have observed that large-scale
traffic on a campus network differs greatly from sample traffic
generated from a few devices in a controlled lab.

There are a few recent characterization studies on encrypted
traffic from IM apps. Deng et al. [5] studied user behaviour in
WeChat using two days of packet-level traffic from an urban
cellular network in China. They found that WeChat traffic
follows a strong diurnal pattern with several bursty spikes,
and that media objects account for 70% of traffic. They also
used an artificial neural network methodology to cluster users
based on 8 properties: active times, active duration, media
update, media uploaded/downloaded, messages sent/received,
and articles viewed. They found that some users use all



WeChat services, while over 60% of users just use WeChat
occasionally.

VI. CONCLUSION

In this paper, we used a combination of active and passive
measurement techniques to characterize one week of IM app
traffic on the University of Calgary’s campus network. In this
study, we focused on one week of empirical connection log
data from October 7-13, 2019, to identify the key character-
istics of four popular IM apps: Facebook Messenger, Google
Hangouts, Snapchat, and WeChat.

Our characterization results show that IM app traffic is
strongly driven by human presence on campus, with very clear
diurnal and weekly patterns. We observed that WeChat users
are also active during the evenings and weekends, and widely
spread across our campus area, while Snapchat users tend
to be active during weekdays and have the smallest network
footprint. WeChat generates the largest inbound data traffic,
while Google Hangouts generates the largest outbound traffic.
On average, Hangouts had the longest average duration for
its TCP connections. All IM apps showed pronounced tails to
their distributions for connection duration and transfer sizes.

Our campus with 35,000 members is an example of a large
and dynamic enterprise-scale edge network. Our study shows
that the number of connections and the generated traffic by
IM apps is large (e.g., 650 GB per day on average). Also, we
observed that even though many users use IM apps, there is no
single dominant IM app. Each serves its own niche of devoted
users, providing a rich ecosystem for online communication
via IM apps.

Our ongoing work focuses on characterizing other IM
apps (e.g., WhatsApp) that use cloud-based hosting, or P2P
architectures, with a diverse array of dynamically-determined
IP addresses. Such applications are challenging for network
traffic analysis and characterization.
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