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Abstract. We study a system where the speed of a processor depends on the
current number of jobs. A queuing model in which jobs consist of a variable
number of tasks, and priority is given to the job with the fewest remaining
tasks, is analyzed in the steady state. The number of processor frequency lev-
els determines the dimensionality of the queuing process. The objective is to
evaluate the trade-o↵s between holding costs and energy costs, when setting the
processor frequency. We obtain exact results for two and three frequency levels,
and accurate approximations that can be generalized further. Numerical and
simulation experiments validate the approximations and provide insights into
the benefits to be gained from optimizing the system.
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1. Introduction

In dynamic speed scaling systems, the speed at which the processor executes
jobs is adjusted dynamically depending on the workload experienced by the
system. Modern processors typically support over a dozen discrete operating
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speeds, often with a factor of two (or more) between the slowest and the fastest
speeds available.

Multiple tradeo↵s exist in such speed scaling systems. The most obvious
is the tradeo↵ between response time and energy consumption. To minimize
response time, one would use the highest processor speed available, while to
minimize energy consumption, one would use the lowest speed. For this reason,
most speed scaling research uses a cost function that combines response time
(i.e., job delay, or holding cost) and energy consumption when carrying out
system optimization.

When the processor speed is set dynamically, depending on the current num-
ber of jobs in the system, the cost function is also a↵ected by the job scheduling
policy. Di↵erent policies produce di↵erent average numbers of jobs, and hence
di↵erent costs.

The scheduling policy of interest to us is Shortest Remaining Processing
Time (SRPT). It has been shown to minimize the system occupancy and hence
the average response time, [11]. Also, it tends to make the CPU run for longer
periods at lower speeds, which leads to low energy consumption. The downside
of that policy is that it discriminates against long jobs, by making them wait
longer and by serving them at lower speeds. However, despite concerns relating
to fairness [1,3], the optimality of SRPT makes it an appealing choice in situa-
tions where job sizes can be predicted accurately. This is the case, for example,
in transferring static resources from a web server, as shown in [8].

Our aim is to evaluate the tradeo↵s involved in systems operating job-count
speed scaling, in conjunction with SRPT scheduling. A typical question that
arises in this context is: at what speed should the processor run when there is
just one job present? High speed, to minimize delay, or low speed, to conserve
energy? We intend to answer this, and other similar questions, by providing al-
gorithms for computing the expected costs and searching for the optimal policy.

The main contributions of the paper are as follows. A queuing model of a
system with a finite number, K, of processor speed levels is analyzed in the
steady state. That number determines the dimensionality of the associated
Markov process. Exact solutions are obtained in the special cases of K = 2
and K = 3. The computational complexity of those solutions is quite high,
so simpler approximations are o↵ered as e�cient alternatives. The idea is to
approximate the marginal probabilities of certain states by estimating the total
amount of work done at the highest possible rate, per unit time in those states.
These approximations may be generalized to larger values of K.

Numerical and simulation experiments are carried out, aimed at verifying the
accuracy of the approximations, and providing new insights into the benefits of
optimization. The advantages and disadvantages of the SRPT policy are also
examined.

A part of this paper is presented in Quantitative Evaluation of SysTems
(QEST’2018). The material that appears here, but not in the proceedings,
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includes proofs of propositions, the exact and approximate solution of the model
with three speed levels, and additional numerical experiments.

1.1. Related work

Prior literature on speed scaling systems appears in both the theory and
systems communities. The theoretical work typically focuses on formal mathe-
matical proofs of the properties of such systems, such as optimality and fairness.
Systems research typically focuses on robust implementations. In this literature
review, we focus primarily on the theoretical work, as relevant background con-
text for our paper.

One of the first analytical studies of dynamic speed scaling systems in which
jobs have explicit deadlines, and the service rate is unbounded, was caried out by
Yao et al. [15]. An alternative approach that minimizes system response time,
within a fixed energy budget, was considered by Bansal et al. [4]. George and
Harrison [7] and Wierman et al. [13, 14] have focused on optimizing the speed
scaling policy in the case where the queuing process is of the Birth-and-Death
type (essentially an M/M/1 queue).

Energy-proportional speed scaling has been studied by Andrew et al. [1] and
by Bansal et al. [2, 4]. In those studies, the cost function is not actually com-
puted, but is characterized and bounded. In particular, those authors examine
the ‘competitive ratio’ of the policy, i.e. the ratio between the cost of the given
policy and the cost of an ideal optimal policy. In [2] it was shown that if P (s)
is the power consumption at speed s, and the speed used when there are n jobs
present satisfies P (s) = n + 1, then SRPT is 3-competitive for an arbitrary
function P . In a similar vein, [1] established that when the speed is set so that
P (s) is proportional to n, SRPT is optimal.

The issue of fairness in relation to the SRPT policy has been addressed,
among others, by Bansal and Harchol-Balter [3], Wierman [12] and Andrew et
al. [1]. The unfairness of SRPT may be aggravated by speed scaling. A policy
such as Processor-Sharing (PS) is fair, but it is suboptimal in terms of response
time and energy consumption [1].

Elahi and Williamson [6] have compared the policies PS and SRPT when
the speed scaling function has the form s = n1/↵, for some ↵ � 2. Analytical
results were obtained in the case of PS, while SRPT was simulated. Di↵erent
behaviours were observed, particularly under conditions of heavy load.

The distinguishing feature of the present work is the analysis of the SRPT
policy under speed scaling, and the computation of the associated cost function.

The system model and its general properties are described in Section 2. The
exact and approximate solutions for K = 2 are presented in Section 3 while
Section 4 deals with the case K = 3. Section 5 presents the results of a number
of numerical and simulation experiments. Some avenues for further research are
outlined in Section 6.
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2. Description of the model

Jobs arrive into the system in a Poisson stream with rate �, and are served
by a single server. Each job consists of a random non-empty batch of i.i.d.
service phases which will be referred to as tasks. The duration of each task,
if served at speed 1, is distributed exponentially with mean 1. The number of
tasks in a job’s batch will be referred to as the size of the job. Those sizes
are i.i.d. random variables with an arbitrary distribution: a job has size i with
probability qi (i = 1, 2, . . .). The average job size, Q, is assumed to be finite.

This job composition means that the possible distributions of job lengths
(i.e. the sums of their constituent tasks), belong to a large sub-class of the
Coxian distributions (see [5]), which are known to be quite general for practical
purposes.

The job scheduling policy is a version of SRPT based on remaining sizes,
rather than lengths. That is, at any moment, the job with the smallest number
of remaining tasks is served. That policy is combined with a control mechanism
whereby the frequency of the processor, i.e. the speed at which it works, is scaled
according to the current load. There are K possible frequency levels. If there
is only 1 job present, it is served at rate µ1 tasks per unit time; if there are
2 jobs, then the one with fewer remaining tasks is served at rate µ2 tasks per
unit time, with µ2 > µ1; . . .; if there are K or more jobs present, then the one
with the fewest remaining tasks is served at rate µK tasks per unit time, with
µK > µK�1.

When the processor runs at speed µk, it consumes energy at a rate propor-
tional to µ↵

k , where ↵ is a constant which depends on the design of the processor;
its value is usually between 1 and 3 (e.g., see [14]). To examine the trade-o↵s
between holding costs and energy costs, we define a cost function, C, which is
a linear combination of the two:

C = c1L+ c2

KX

k=1

ukµ
↵
k . (2.1)

Here L is the average total number of tasks present in the system, c1 and c2 are
given coe�cients, and uk is the probability that frequency level k is in operation.
We shall assume, for simplicity, that an idle processor runs at speed µ1. It would
be just as easy to assume a di↵erent idling speed, or 0. The value of ↵ does not
a↵ect the model; in all examples we shall take ↵ = 2.

The purpose of the subsequent analysis is to provide algorithms for comput-
ing L and uk, and hence evaluate the cost function for a given set of parameters.
The optimal values of µk can then be found by applying an appropriate numer-
ical search.

The operation of the scheduling policy can be modeled by using K task
queues, numbered 1, 2, . . ., K. Sort the jobs present in the system in decreas-
ing order of the numbers of their remaining tasks. Then queue 1 contains the
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remaining tasks of job 1 (the largest in the system), queue 2 contains the re-
maining tasks of job 2, if any, . . ., queue K � 1 contains the remaining tasks of
job K � 1, if any, and queue K contains the remaining tasks of all other jobs,
if any, whose sizes are smaller than that in queue K � 1. Queue K is the only
one where there may be tasks from more than one job. So, the number of tasks
in queue i is always larger than or equal to the number in queue j if i < j and
1  i, j  K � 1. Queue K can contain an arbitrary number of tasks.

The state of the system at a given moment in time is a vector (n1,n2,. . .,nK),
specifying the contents of the K queues. That vector satisfies (n1 � n2 � · · · �
nK�1), but it is possible that nK > nK�1. The server always serves the non-
empty queue with the largest index, and if that index is i, it works at the rate
of µi tasks per unit time.

An incoming job of size s tasks which finds the system in state (n1,n2,. . .,nK)
may cause a reassignment of tasks to queues, in order to preserve the shortest-
remaining order. If s  nK�1, then no such reassignment is necessary and the
resulting state is (n1, . . . , nK�1, nK + s) . Otherwise, the incoming s tasks re-
place the content of queue i, where i is the lowest index such that s > ni.
Queue K receives the tasks from queue (K � 1), so that the new state is
(n1, . . . , ni�1, s, ni, . . . , nK + nK�1) . If s > n1, then the part of the vector
preceding s is empty.

Consider now the steady-state probability, pk(n), that the total number
of tasks in queues 1, 2, . . ., k is n, while queues k + 1, . . . ,K are empty (k =
1, 2, . . . ,K). For every k, pk(0) is the probability of an empty system, so we may
sometimes omit the index and just write p(0). The di↵erence pk(n)� pk�1(n),
for k = 1, 2, . . . ,K and n > 0, with p0(n) = 0 by definition, is the probability
that there are n tasks present and the non-empty queue with the highest index
is queue k. In other words, that is the probability that there are n tasks present
and the service rate is µk. These probabilities are 0 when n < k.

Let wk(z) be the generating function of pk(n):

wk(z) =
1X

n=0

znpk(n) ; k = 1, . . . ,K .

The last of these functions, wK(z), corresponds to the distribution of the total
number of tasks in the system. It satisfies the normalizing condition wK(1) = 1.

The marginal probabilities, uk, that the server works at rate µk (they appear
in the definition (2.1) of the cost function C), are given by

u1 = w1(1) ; uk = wk(1)� wk�1(1) ; k = 2, . . . ,K .

Let a(z) be the generating function of the job size distribution:

a(z) =
1X

n=1

znqn .
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We shall also need the excess probabilities, rn, that the size of a job is strictly
greater than n, for n = 0, 1, . . . (r0 = 1). The generating function of rn, b(z), is
given by

b(z) =
1X

n=0

znrn = 1 +
1X

n=1

zn

1�

nX

j=1

qj

�
.

Table 1 summarizes the notations used in the paper.

� Arrival rate
qi P (incoming job size = i)
Q Average job size
K Number of frequency levels
µk Service rate at level k
uk P (service level = k)
L E(total number of tasks)
nk Number of tasks in queue k
pk(n) P (n tasks in queues 1, . . . , k; other queues empty)
⇡(n1, . . . , nK) Joint stationary queue size distribution
wk(z) Generating function of pk(n)
a(z) Generating function of qi
ri P (job size > i)
b(z) Generating function of ri

Table 1. Summary of notations

The following relation exists between b(z) and a(z):

b(z) =
1� a(z)

1� z
. (2.2)

This is established by expanding b(z)�zb(z) and performing cancellations. Note
that the value of b(z) at z = 1 is the average job size: b(1) = a0(1) = Q.

We have the following result.

Lemma 2.1. The generating functions w1(z), w2(z), . . ., wK(z) satisfy the
relation

wK(z)[µK � �zb(z))] = µ1p(0) +
K�1X

k=1

(µk+1 � µk)wk(z) . (2.3)

Proof. Make a cut in the state diagram between the set of states in which the
total number of tasks in the system does not exceed n, and the set of states
where that number exceeds n. The ‘upwards’ flows across the cut are from
states with j jobs present (j  n), when a job of size greater than n� j arrives.



The SRPT service policy with frequency scaling 693

The ‘downwards’ flows across the cut are from states with n+ 1 tasks present,
when one of them completes. Bearing in mind that the service rate is µi when
queue i is the non-empty queue with the highest index, which in those states
happens with probability pi(n+ 1)� pi�1(n+ 1), we can write

�
nX

j=0

pK(j)rn�j = p1(n+ 1)µ1 +
KX

i=2

µi[pi(n+ 1)� pi�1(n+ 1)] .

This can be rewritten more conveniently as:

�
nX

j=0

pK(j)rn�j = µKpK(n+ 1) +
K�1X

i=1

(µi � µi+1)pi(n+ 1) . (2.4)

Multiplying (2.4) by zn and summing over all n gives, after a little manipu-
lation and remembering that ⇡i(0) = ⇡j(0) for all i, j,

�zb(z)wK(z) = µKwK(z)� µ1p(0) +
K�1X

i=1

(µi � µi+1)wi(z) .

This is clearly equivalent to (2.3). 2

Setting z = 1 in (2.3) yields the normalization condition:

wK(1) =
µ1p(0) +

PK�1
i=1 (µi+1 � µi)wi(1)

µK � �Q
= 1 . (2.5)

The following proposition gives the necessary and su�cient conditions for
the stability of the system.

Proposition 2.1. The queuing system is stable if and only if

�Q < µK . (2.6)

Proof. The necessity of (2.6) follows from the fact that, if p(0) and wi(1) are
positive and µi+1 � µi for i = 1, 2, . . . ,K � 1, then the denominator in the
right-hand side of (2.5) must be positive.

To prove the su�ciency, note first that the task arrival rate into queue K is
bounded by �Q. Hence, condition (2.6) ensures that queue K is stable and, in
particular, its average busy period, BK , is finite.

Now consider queue K � 1. The average interval that it takes to serve a
task in it, SK�1, is finite. Indeed, it is bounded by (1 + �BK)/µK�1, since
the average number of service interruptions does not exceed �/µK�1, and the
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duration of each interruption is BK . On the other hand, when there are j tasks
in queue K � 1, the task arrival rate is bounded by

�j = �
1X

k=j+1

kqk .

Since the average job size is finite, for every positive ✏ there is an integer J
such that �j < ✏ when j > J . In particular, there is an integer J such that
�j < 1/SK�1, i.e. the drift of queue K � 1 is negative, when j > J . When
j  J , the drift is bounded. This implies, according to Pakes’ lemma (see [9]),
that queue K � 1 is stable and its average busy period, BK�1, is finite.

Repeating this argument for queues K�2, . . ., 1, establishes the proposition.
2

The steady-state average number of tasks in the system, L, is given by
w0

K(1). First, by di↵erentiating (2.2) and applying L’Hôpital’s rule at z = 1,
we find that b0(1) = a00(1)/2. Now, taking the derivative of (2.3) at z = 1 and
rearranging terms, we obtain

L =

PK�1
i=1 (µi+1 � µi)w0

i(1) + �(Q+ 1
2a

00(1))

µK � �Q
. (2.7)

Thus the quantities that are needed in order to evaluate the cost function C,
given by (2.1), are expressed in terms of the functions wi(z) for i = 1, 2, . . . ,K�
1, i.e. in terms of the probabilities of all states in which queue K is empty. In
the following sections we provide exact and approximate solutions for those
probabilities, in the cases K = 2 and K = 3. The methodology employed can
be extended to deal with higher values ofK, at the price of increased complexity.

The following general result will be useful. Denote by ⇡1(i) the marginal
probability that there are i tasks in queue 1 (and any numbers in the other
queues). Then

�rn

nX

i=0

⇡1(i) = µ1⇡(n+ 1, 0, . . . , 0) , (2.8)

where ⇡(n+1, 0, . . . , 0) is the probability that queue 1 contains n+1 tasks and
all other queues are empty. This equation is obtained by balancing the flows
across a cut that separates the set of states with no more than n tasks in queue
1, from all other states.

The probabilities ⇡1(i) can also provide an expression for the expected resi-
dence time, T1, of a job in queue 1. Indeed, if the system is in state (i, ·), then
jobs arrive into queue 1 at rate �ri. On the other hand, the average number
of jobs in queue 1 (not tasks!) is equal to the probability that queue 1 is not
empty, i.e., 1� p(0). Therefore, according to Little’s result:

T1 =
1� p(0)

�
P1

i=0 ri⇡1(i)
. (2.9)
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3. The model with K = 2 frequency levels

In this section we consider our model with two frequency levels, i.e., the
server works at speed µ1 when there is only one job in the system, and µ2

when there are at least two jobs, with µ1 < µ2. In Section 3.1 we provide the
exact solution of the model, whereas in Section 3.2 we give an approximate,
yet a more e�cient approach to the computation of the stationary performance
indices. The accuracy of the approximation will be assessed in Section 5 and
will be shown to be very high.

3.1. Exact analysis

The detailed system state is now a pair of non-negative integers, (i, j), where
i is the number of tasks in queue 1 and j is the number of tasks in queue 2. The
possible transitions out of state (i, j) are:

To state (i� 1, 0) with rate µ1 if i > 0 and j = 0;

To state (i, j � 1) with rate µ2 if i > 0 and j > 0;

To state (i, j + k), k = 1, 2, . . . , i, with rate �qk;

To state (k, j + i), k = i+ 1, i+ 2, . . ., with rate �qk.

The states (0, j), for j > 0, are unreachable and their probabilities are 0.
Denote the probability of state (i, j) by ⇡(i, j). These probabilities satisfy

the following global balance equations:

�⇡(0, 0) = µ1⇡(1, 0) . (3.1)

(�+ µ1)⇡(i, 0) = �qi⇡(0, 0) + µ1⇡(i+ 1, 0) + µ2⇡(i, 1) . (3.2)

(�+ µ2)⇡(i, j) = �
mX

k=1

qk⇡(i, j � k) + �qi

m1X

k=1

⇡(k, j � k) + µ2⇡(i, j + 1) ,

(3.3)

where m = min(i, j) and m1 = min(i� 1, j); i > 0, j > 0.
These homogeneous linear equations have infinitely many solutions which

are all proportional to each other. If we find one solution and then normalize
it by dividing each ⇡(i, j) by their sum, G, then the result will be the unique
joint distribution of the two queue sizes.

Summary of the solution. The algorithm consists of a series of recurrent
steps, carried out for increasing values of the number of tasks in queue 1. In step
1, the probabilities ⇡(1, j) are found by determining their generating function.
In step i, for i > 1, the generating function of ⇡(i, j) is obtained in terms of
those already determined.
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Start by setting ⇡(0, 0) = 1. Equation (3.1) then gives ⇡(1, 0) = ⇢1, where
⇢1 = �/µ1. Note that this quantity does not represent o↵ered load, since � is
the arrival rate of jobs, while µ1 is a service rate of tasks.

Consider the probabilities ⇡(1, j), for j = 0, 1, . . ., and define the generating
function

g1(z) =
1X

j=0

⇡(1, j)zj .

When i = 1 and j = 0, equation (3.2) can be rewritten as

(�+ µ2)⇡(1, 0) = �q1⇡(0, 0) + (µ2 � µ1)⇡(1, 0) + µ1⇡(2, 0) + µ2⇡(1, 1) .

For i = 1 and j � 1, equations (3.3) are

(�+ µ2)⇡(1, j) = �q1⇡(1, j � 1) + µ2⇡(1, j + 1) .

Multiplying the above by zj and summing, and remembering that ⇡(0, 0) = 1,
we get

d1(z)g1(z) = �q1z � [µ1z + µ2(1� z)]⇡(1, 0) + µ1z⇡(2, 0) , (3.4)

where
d1(z) = �z(1� q1z) + µ2(z � 1) .

This expression for g1(z) contains an unknown constant, ⇡(2, 0). However, note
that the coe�cient d1(z) is negative for z = 0 and positive for z = 1. Therefore,
there is a value, z1, such that d1(z1) = 0. Since g1(z) is finite on the whole
interval z 2 [0, 1], the right-hand side of (3.4) must vanish at z = z1. This gives

µ1z1⇡(2, 0) = [µ1z1 + µ2(1� z1)]⇡(1, 0)� �q1z1⇡(0, 0) .

The next step is to consider the probabilities ⇡(2, j), for j � 0, and their
corresponding generating function

g2(z) =
1X

j=0

⇡(2, j)zj .

Repeating the manipulations that led to (3.4), we obtain

d2(z)g2(z) = �q2z � [µ1z + µ2(1� z)]⇡(2, 0) + µ1z⇡(3, 0) + �q2z
2g1(z) , (3.5)

where
d2(z) = �z(1� q1z � q2z

2) + µ2(z � 1) .

Again, the coe�cient of g2(z) is negative at z = 0 and positive at z = 1. There-
fore, there is a value z2 in the interval (0,1), such that d2(z2) = 0. Equating the
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right-hand side of (3.5) to 0 at z = z2, determines the single unknown constant
in that equation, ⇡(3, 0):

µ1z2⇡(3, 0) = [µ1z2 + µ2(1� z2)]⇡(2, 0)� �q2z2⇡(0, 0)� �q2z
2
2g1(z2) .

The i’th step in this process evaluates the generating function of the prob-
abilities ⇡(i, j), gi(z), in terms of the already known functions g1(z), g2(z), . . .,
gi�1(z), and constants ⇡(1, 0), ⇡(2, 0), . . ., ⇡(i, 0):

di(z)gi(z) = �qiz � [µ1z + µ2(1� z)]⇡(i, 0) + µ1z⇡(i+ 1, 0) + �qiz
i�1X

k=1

zkgk(z) ,

(3.6)
where

di(z) = �z(1�
iX

k=1

qkz
k) + µ2(z � 1).

The coe�cient of di(z) has a zero, zi, in the interval (0,1), which determines
the new unknown constant ⇡(i+ 1, 0).

These iterations continue until gi(1) < ✏, for some su�ciently small ✏, or
until the largest possible value of i, if the job sizes are bounded. Eventual
termination is guaranteed if the queuing process is stable. At that point, all
(unnormalized) probabilities ⇡(i, 0), and hence the function w1(z), have been
determined.

The normalization constant, G, is given by (2.5):

G =
µ1⇡(0, 0) + (µ2 � µ1)w1(1)

µ2 � �Q
. (3.7)

Dividing all ⇡(i, j) values, and hence w1(1), by G, completes the computation
of the joint probability distribution of the states (i, j). Lemma 1 now provides
w2(z).

The total average number of tasks in the system, L, is given by (2.7), which
now has the form

L =
(µ2 � µ1)w0

1(1) + �[Q+ 1
2a

00(1)]

µ2 � �Q
. (3.8)

The probabilities that the processor speed is µ1, or µ2, are w1(1) and 1�w1(1),
respectively.

Thus, the components of the cost function C are obtained in terms of

w1(1) =
X

i

⇡(i, 0) ,

and
w0

1(1) =
X

i

i⇡(i, 0) .
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3.2. Approximate solution

In order to derive the approximation, consider the marginal probabilities,
⇡(i, ·) = gi(1), that there are i tasks in queue 1, with ⇡(0, ·) = ⇡(0, 0). These
probabilities appear in the left-hand side of (2.8).

The fraction of time that the system spends in state (i, ·), such that queue 2
is not empty, consists of the services of all tasks that join queue 2 when queue
1 reaches size i. This can happen when (a) the system is in state (k, ·), for
1  k < i, and a job of size i arrives (in which case k tasks are transferred to
queue 2), or (b) the system is in state (i, ·) and a job of size k arrives, for k  i;
all of its tasks join queue 2. Hence we can write

⇡(i, ·)� ⇡(i, 0) = �

"
qi

i�1X

k=1

k⇡(k, ·) + ⇡(i, ·)
iX

k=1

kqk

#
1

µ2
; i = 1, 2, . . . . (3.9)

The first sum in the right-hand side is absent when i = 1.
Introducing the notation

si =
iX

k=1

k⇡(k, ·) ; ai =
iX

k=1

kqk , (3.10)

we can rewrite (3.9) as

⇡(i, ·) = ⇡(i, 0) + qi⇢2si�1

1� ⇢2ai
; i = 1, 2, . . . , (3.11)

where ⇢2 = �/µ2 and s0 = 0 by definition.
Start with ⇡(0, 0) = 1 and ⇡(1, 0) = ⇢1. Compute ⇡(1, ·) from (3.11), then

⇡(2, 0) from (2.8), ⇡(2, ·) from (3.11), ⇡(3, 0) from (2.8) and so on, up to the
desired accuracy. Normalize, using (3.7).

This procedure is more economical and more stable than the exact solution.
Moreover, it can be generalized to models with more than two queues.

The accuracy of the approximation will be examined in Section 5.

4. The model with K = 3 frequency levels

In this section we consider a system with three frequency levels, i.e., there
are three service rates, µ1 < µ2 < µ3. As in Section 3 we provide an exact
but computationally expensive analysis and an approximate but accurate and
e�cient solution.

4.1. Exact analysis

For K = 3, the system state is a triple, (i, j,m), indicating the numbers of
tasks in queues 1, 2 and 3, respectively. Only the states for which j  i are
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feasible. Moreover, if i = 0, then j = m = 0; if i > 0 but j = 0, then m = 0.
Denote by ⇡(i, j,m) the steady-state probability of state (i, j,m).

The arrival of a batch of size k, which occurs at rate �qk, may cause the
following transitions:

(a) From state (0, 0, 0) to state (k, 0, 0).

(b) From state (i, 0, 0) (i > 0) to state (i, k, 0) if k  i, or to state (k, i, 0) if
k > i.

(c) From state (i, j,m) (i, j > 0) to state (i, j,m + k) if k  j, or to state
(i, k,m+ j) if j < k  i, or to state (k, i,m+ j) if k > i.

The transitions caused by task completions are: from state (i, 0, 0) (i > 0)
to state (i� 1, 0, 0) at rate µ1; from state (i, j, 0) (j > 0) to state (i, j � 1, 0) at
rate µ2; and from state (i, j,m) (m > 0) to state (i, j,m� 1) at rate µ3.

An exact solution of this model can be obtained by considering the generating
functions

gi,j(z) =
1X

m=0

⇡(i, j,m)zm ; i = 1, 2, . . . , j = 1, 2, . . . , i . (4.1)

Start by setting ⇡(0, 0, 0) = 1. Then a balance equation analogous to (3.1)
gives ⇡(1, 0, 0) = �/µ1. The first of the generating functions (4.1), g1,1(z), is
given by

d1(z)g1,1(z) = [µ3(z � 1)� µ2z]⇡(1, 1, 0) + �q1z⇡(1, 0, 0) , (4.2)

where d1(z) has a similar form to the coe�cient appearing in (3.4), but with µ2

replaced by µ3:
d1(z) = �z(1� q1z) + µ3(z � 1) .

There is a value, z1, in the interval (0,1), such that d1(z1) = 0. Equating the
right-hand side of (4.2) to 0 at that point provides the probability ⇡(1, 1, 0).
Then, equation (2.8) determines ⇡(2, 0, 0):

µ1⇡(2, 0, 0) = �r1[1 + ⇡(1, 0, 0) + g1,1(1)] .

In step i of this process, we have the following relations for gi,1(z), gi,2(z),
. . ., gi,i(z):

dj(z)gi,j(z) = xi,j(z) + �qjz
j�1X

k=1

gi,k(z)z
k + 1(i > j)�qiz

jX

k=1

gj,k(z)z
k , (4.3)
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where dj(z) is the coe�cient that appears in (3.6), but with µ2 replaced by µ3;
xi,j(z) involves the boundary probabilities,

xi,j(z) = �qjz⇡(i, 0, 0) + �qiz⇡(j, 0, 0) + [µ3(z � 1)� µ2z]⇡(i, j, 0)

+ 1(i > j)µ2z⇡(i, j + 1, 0) .

Note that the generating functions gj,k(z) for j < i have already been deter-
mined, as well as the probabilities ⇡(i, 0, 0) and ⇡(j, 0, 0). The unknown quanti-
ties here are the i probabilities ⇡(i, j, 0), and the i generating functions gi,j(z),
for j = 1, 2, . . . , i.

Each of the coe�cients dj(z) has a zero in the interval (0,1). Equating
the right-hand side of (4.3) to 0 at those points provides i simultaneous linear
equations which can be used to compute the unknown probabilities, and hence
the i generating functions. Equation (2.8) then determines ⇡(i+ 1, 0, 0).

At the termination of these iterations, all probabilities are divided by the
normalization constant defined in (2.5).

4.2. Approximate solution

The implementation of the solution presented in Section 4.1 is quite complex
and numerically expensive. It is therefore desirable to extend the approximation
of the previous section to the case K = 3.

The idea is to approximate the marginal probability that there are i tasks
in queue 1 and j tasks in queue 2, ⇡(i, j, ·), by estimating the total amount of
work done at rate µ3 per unit time in that state. The following events result in
such work being contributed:

(a) A job of size k  j arrives and finds state (i, j, ·).

(b) A job of size j arrives and finds state (i, k, ·), with k < j  i.

(c) A job of size i arrives and finds state (j, k, ·), with k  j < i.

In each of those cases, k tasks join, or are transferred to queue 3.
Introducing the notation

si,j =
j�1X

k=1

k⇡(i, k, ·) ; ti,j = 1(i > j)
jX

k=1

k⇡(j, k, ·) ,

we can write an equation similar to (3.9)

⇡(i, j, ·)� ⇡(i, j, 0) = �


⇡(i, j, ·)

jX

k=1

qk + qjsi,j + qiti,j

�
1

µ3
.
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This yields a generalization of (3.11):

⇡(i, j, ·) = ⇡(i, j, 0) + ⇢3(qjsi,j + qiti,j)

1� ⇢3aj
, (4.4)

where ⇢3 = �/µ3 and aj is given by (3.10).
In addition, the boundary probabilities ⇡(i, j, 0) are approximated by using

the recurrences

µ2⇡(i, j + 1, 0) = �rj


⇡(i, 0, 0) +

jX

k=1

⇡(i, k, ·)
�
. (4.5)

These equations balance the flows across a cut between queue 2 states j and
j + 1, while ignoring all queue 1 states other than i.

Now, equations (4.4) and (4.5), together with (2.8), allow all required quanti-
ties to be computed in sequence, starting with ⇡(0, 0, 0) = 1 and ⇡(1, 0, 0) = ⇢1.

5. Numerical and simulation results

In this Section we describe several experiments aimed at evaluating the accu-
racy of the approximate solutions that have been proposed, and also observing
the behaviour of the cost function (2.1). Systems with two and three frequency
levels are examined. A remarkable observation emerging from these experi-
ments is that, for the purposes of optimization, the models with K > 2 may be
neglected.

K = 2 frequency levels

We consider the model studied in Section 3. In Figure 1, the cost function C
is computed exactly and approximately, as described in section 3, and is plotted
against the queue 1 service rate, µ1. The two cost coe�cients are c1 = 1 and
c2 = 2. The job arrival rate and the queue 2 service rate are fixed at � = 1 and
µ2 = 7. A geometric distribution of job sizes is assumed, with mean 5, truncated
at a maximum job size of 50. Thus the o↵ered load, �Q/µ2 represents about
71% utilization. The value of µ1 is varied between 1 and 6, in increments of 1.

The cost function is convex in µ1. We have no formal proof of this, but it is
invariably observed to be the case. Intuitively, at low values of µ1 the holding
costs dominate, while at large values the service rate costs dominate. Moreover,
if a point is reached such that an increase in µ1 leads to an increase in C, then
clearly any further increase in µ1 would make matters worse.

The two plots are very close. The approximate solution underestimates C
slightly, but the relative errors never exceed 1%. In particular, both solutions
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Figure 1. K = 2: Cost as a function of µ1

� = 1; µ2 = 7; Q = 5; c1 = 1; c2 = 2

agree that the optimal value of µ1 is 3 (subject to the granularity of the incre-
ments).

We next examine the e↵ect of increasing the variance of the job size distri-
bution. Consider a rather extreme case where jobs have size 1, with probability
3/4, or size 17, with probability 1/4. The average job size is the same as in Fig-
ure 1, Q = 5, but the variance has gone up from 20 to 337. All other parameters
are the same, and again the cost function is plotted against the service rate µ1.

Figure 2 shows that the increase in variance has led to an increase in costs
of between 7% and 10%. The approximate solution is still within less than 1%
of the exact one. The optimal value of µ1 has not changed.

The e↵ect of the o↵ered load on the shape of the cost function is illustrated
in Figure 3. Three loading regimes are considered, light, moderate and heavy.
These are represented by the arrival rates � = 0.3, � = 0.8 and � = 1.3; they
correspond to loadings of about 21%, 57% and 93%, respectively. The other
parameters are the same as in Figure 1. Costs are evaluated exactly and are
plotted against the queue 1 service rate, µ1.

The figure suggests the following observations, all of which are quite intu-
itive. As the o↵ered load increases, (a) costs increase; (b) the relative di↵erence
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Figure 2. K = 2: Large variance of job sizes
� = 1; µ2 = 7; Q = 5; c1 = 1; c2 = 2
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Figure 3. K = 2: The e↵ect of load on costs
µ2 = 7; Q = 5; c1 = 1; c2 = 2

between the optimal and the pessimal costs decreases; (c) the optimal value of
µ1 increases.
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K = 3 frequency levels

The next example evaluates the accuracy of the approximation proposed in
Section 4, for a system with three frequency levels. This time µ2 and µ3 are
fixed at 6 and 7 tasks per second respectively, while µ1 is varied between 1 and 6,
at increments of 1. The job size distribution is geometric with mean 5, and the
other parameters are the same as before. Figure 4 compares the approximated
costs with simulated ones. It was easier to simulate than to implement the exact
solution. Each simulated point represents a run where 500, 000 jobs arrive into
the system (i.e., an average of 2.5 million tasks are served).
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Figure 4. K = 3: Cost as a function of µ1

� = 1; µ2 = 6; µ3 = 7; Q = 5; c1 = 1; c2 = 2

The approximation is again very accurate, with relative errors not exceeding
1%. Moreover, the two plots agree on the optimal point of µ1 = 3 (subject
to the granularity of the increments). However, the di↵erence in costs between
µ1 = 3 µ1 = 4 is very slight.

5.1. The benefits of optimization

Our next aim is to quantify the gains of frequency scaling, in the context of a
3-queue system under di↵erent loading conditions. Three policies are compared.
The ‘default’ policy, or policy 0, does not optimize; it serves all three queues at
rate µ3. Under policy 0, the system is equivalent to a single queue with batch
arrivals. Policy 1 serves queues 2 and 3 at rate µ3, but uses the optimal value for
µ1 (found by a one-dimensional search). This amounts to an optimized K = 2
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system. Policy 2 serves queue 3 at rate µ3, but uses the optimal values for µ1

and µ2 (found by a two-dimensional search).
For consistency, all costs in this experiment were evaluated by applying the

3-queue approximation of section 4. We have relied on the established accuracy
of that approximation. With a little extra e↵ort, policies 0 and 1 could have
been evaluated exactly.

In Figure 5, the costs incurred by the above three policies are plotted against
the job arrival rate �. It varies between 0.2 and 1.2, while the top service rate
remains fixed at µ3 = 7. Job sizes are distributed geometrically with mean 5,
which means that the system loading varies between 14% and 86%. The cost
coe�cients are c1 = 1 and c2 = 2. When searching for the best µ1 and µ2

values, the latter were incremented in steps of 0.5.
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Figure 5. K = 3: The benefits of optimization
µ3 = 7; Q = 5; c1 = 1; c2 = 2

The results displayed in Figure 5 are quite instructive. First, we observe
that there is less to be gained by optimizing a heavily loaded system, than a
lightly loaded one. Of course this was to be expected, since the holding costs
become dominant under heavy loads, and minimizing those costs requires large
service rates.

The second observation is not so predictable: it seems that the big gains
are obtained by optimizing just with respect to µ1 (policy 1). The additional
improvement achieved by optimizing with respect to µ2 as well (policy 2), is
quite minor. It is even debatable whether the expense of searching for policy 2
is justified by the benefits that it brings.
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This last observation has practical importance. It suggests that the 2-queue
model, rather than being just the simplest special case, is in fact a really sig-
nificant model from the point of view of control and optimization. One may
restrict the search for an optimal policy to the case K = 2, and be reasonably
confident that the resulting policy would not be bettered by much.

To check whether the above conclusion remains valid under di↵erent cost
structures, we have repeated the last experiment with several pairs of coe�cients
c1 and c2. Figure 6 shows one such example, where c1 = 2 and c2 = 1 (i.e.,
holding tasks in the system incurs higher penalties than speeding up the server).
The other parameters remain unchanged, and the costs of policies 0, 1 and 2
are plotted against the arrival rate, �.
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Figure 6. K = 3: Di↵erent cost coe�cients
µ3 = 7; Q = 5; c1 = 2; c2 = 1

We observe again that policy 1 achieves significant gains compared to policy
0, but the additional benefits of optimizing with respect to µ2 as well as µ1

are negligible. The conclusion that the most important model is K = 2, is
confirmed.

The last experiment attempts to compare the ‘e�cient but unfair’ SRPT
policy, with a ’fair but not so e�cient’ policy such as Processor-Sharing. A
measure of the penalty inflicted by SRPT on long jobs is provided by the average
residence, T1, of a job in queue 1. That is the queue containing the job with the
largest number of remaining tasks. We shall compare T1 with the unconditional
average response time, WSRPT , of a job in the SRPT system, and also with the
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response time, WPS , of a job in a PS system with the same speed scaling. In
addition, the cost of SRPT will be compared with that incurred by PS.

The Processor-Sharing queue with aK-level frequency scaling is a Birth-and-
Death process with a constant arrival rate, �, and a state-dependent service rate.
In our case, the death rate is equal to µn/Q when there are n jobs present, for
n = 1, 2, . . . ,K � 1, and µK/Q when n � K (Q is the average number of tasks
per job). That process is easily solvable.

The following parameters are fixed: K = 2, µ2 = 7, � = 0.8 (i.e. Q = 5),
c1 = 1, c2 = 1. The system loading is varied between about 20% and 80% by
increasing �. For each value of �, the optimal µ1 is found and the resulting
SRPT and PS models are solved.
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Figure 7. Average residence in queue 1, in SRPT system and in PS system
K = 2; µ2 = 7; Q = 5; c1 = 1; c2 = 1

In Figure 7, the values of T1, WSRPT and WPS are plotted against �. The
first and third of these are computed exactly. The WSRPT values were obtained
by simulation, because our model provides performance measures for tasks, not
jobs.

We observe that WSRPT is lower than WPS , and the di↵erence between the
two increases with the o↵ered load. This is not surprising, since the SRPT policy
is optimal. The penalty su↵ered by the longest jobs under SRPT is measured by
the higher values of the conditional residence time, T1. At heavy loads, however,
the e�ciency of SRPT causes even the long jobs to perform better than under
PS.
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Note that the curves are not monotone increasing. This is due to the opti-
mization with respect to µ1. For example, when � increases from 0.3 to 0.4, the
optimal µ1 increases to an extent that actually reduces the residence times in
both the PS and the SRPT queues.

Just for this example, in order to have a consistent comparison of costs
between the two policies, we modify the cost function C by replacing the average
number of tasks, L, in (2.1), with the average number of jobs present.

Figure 8 illustrates the costs achieved by the two policies. Over this range of
loads, the costs of SRPT (which were again obtained by simulation), are lower
than those of PS by about 10% — 13%.
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Figure 8. Costs under SRPT and PS policies
K = 2; µ2 = 7; Q = 5; c1 = 1; c2 = 1

One could summarize the last two figures by saying that the SRPT policy
o↵ers modest but significant e�ciency gains, at the price of modest penalties to
the longest jobs.

6. Conclusion

We have addressed the trade-o↵s arising in systems employing frequency
scaling in conjunction with the Shortest Remaining Processing Time scheduling
discipline. A non-trivial queuing model in which jobs represent batches of tasks
was devised and analyzed. A cost function taking into account the system’s
power consumption and the expected number of tasks present was evaluated.
Other metrics that were computed include the probabilities that the system
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operates at its various frequency levels, the expected time that a job remains
the largest job in the system and its expected size. Exact solutions were de-
rived in the cases of 2 and 3 frequency levels, and accurate approximations were
proposed. A number of numerical and simulation experiments provided impor-
tant insights into the behaviour of the system. In particular, it seems that 2
frequency levels, properly optimized, are su�cient for practical purposes.

An interesting topic for future research would be to explore other scheduling
policies that combine e�ciency with a degree of fairness. One such candidate
would be the Shortest Elapsed Time First (SETF) policy, see [10]. It has the
advantage that the processing times or batch sizes do not need to be known
in advance. However, the analytical challenges associated with that policy are
considerable.
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